论文标题

时间反转对称性绝缘子的散装对应关系:去除真实空间不变性

Bulk-corner correspondence of time-reversal symmetric insulators: deduplicating real-space invariants

论文作者

Kooi, Sander H., van Miert, Guido, Ortix, Carmine

论文摘要

绝缘子的拓扑通常是通过存在无间隙边界模式来揭示的:这是所谓的散装对应关系。但是,晶体绝缘子的多体波函数具有其他拓扑特性,这些拓扑特性不会产生表面光谱特征,但表现为(分数)量化在晶体边界处的电子电荷。在这里,我们为材料的物理相关情况制定了具有时间反向对称性和自旋轨道耦合的物理相关情况。为此,我们会开发“部分”的真实空间不变性,这些不变剂既不能以浆果阶段来表达,也不能使用基于对称性的指标。这些新的晶体不变剂控制着(分数)量化的角度电荷,既有孤立的材料结构和没有间隙界面模式的异质结构。我们还表明,部分真实空间不变性能够检测最近发现的脆弱类型的所有时间反向对称拓扑阶段。

The topology of insulators is usually revealed through the presence of gapless boundary modes: this is the so-called bulk-boundary correspondence. However, the many-body wavefunction of a crystalline insulator is endowed with additional topological properties that do not yield surface spectral features, but manifest themselves as (fractional) quantized electronic charges localized at the crystal boundaries. Here, we formulate such bulk-corner correspondence for the physical relevant case of materials with time-reversal symmetry and spin-orbit coupling. To so do we develop "partial" real-space invariants that can be neither expressed in terms of Berry phases nor using symmetry-based indicators. These new crystalline invariants govern the (fractional) quantized corner charges both of isolated material structures and of heterostructures without gapless interface modes. We also show that the partial real-space invariants are able to detect all time-reversal symmetric topological phases of the recently discovered fragile type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源