论文标题
围绕特朗普的故事的计算时间表重建:故事动荡,叙事控制和集体计时病
Computational timeline reconstruction of the stories surrounding Trump: Story turbulence, narrative control, and collective chronopathy
论文作者
论文摘要
衡量围绕任何给定主题的特定种类,时间顺序,多样性和周转率,对于对该主题的历史影响的完全估算至关重要。在这里,我们将Twitter用作分布式新闻和意见汇总来源,以识别和跟踪美国第45任总统唐纳德·特朗普(Donald Trump)的主导日期故事的动态。使用约为200亿1克的数据集,我们首先将每天的1克和2克使用频率与一年前的使用频率进行比较,以创建日常和一周规模的时间表2016年至2020年的特朗普故事。我们衡量了特朗普的叙事控制,这些故事与特朗普有关的范围是特朗普或通过特朗普提出的。然后,我们量化了故事的动荡和集体计时症 - 人们对主题的故事似乎随着时间而改变的速度。我们表明,2017年是特朗普最动荡的一年。在2020年,在乔治·弗洛伊德(George Floyd)的谋杀案之后的黑人生活问题抗议活动中,迅速的营业率首先返回,然后在2020年美国总统选举之前和之后的事件中,迅速的营业率首次恢复了故事,这是2020年的故事,迅速流动恢复了。我们的方法可以应用于任何众所周知的现象,并具有使新闻,历史和传记的计算方面的潜力。
Measuring the specific kind, temporal ordering, diversity, and turnover rate of stories surrounding any given subject is essential to developing a complete reckoning of that subject's historical impact. Here, we use Twitter as a distributed news and opinion aggregation source to identify and track the dynamics of the dominant day-scale stories around Donald Trump, the 45th President of the United States. Working with a data set comprising around 20 billion 1-grams, we first compare each day's 1-gram and 2-gram usage frequencies to those of a year before, to create day- and week-scale timelines for Trump stories for 2016 through 2020. We measure Trump's narrative control, the extent to which stories have been about Trump or put forward by Trump. We then quantify story turbulence and collective chronopathy -- the rate at which a population's stories for a subject seem to change over time. We show that 2017 was the most turbulent overall year for Trump. In 2020, story generation slowed dramatically during the first two major waves of the COVID-19 pandemic, with rapid turnover returning first with the Black Lives Matter protests following George Floyd's murder and then later by events leading up to and following the 2020 US presidential election, including the storming of the US Capitol six days into 2021. Trump story turnover for 2 months during the COVID-19 pandemic was on par with that of 3 days in September 2017. Our methods may be applied to any well-discussed phenomenon, and have potential to enable the computational aspects of journalism, history, and biography.