论文标题
在Smale的猜想中,diff $(s^4)$
On the Smale Conjecture for Diff$(S^4)$
论文作者
论文摘要
最近,渡边(Watanabe)以$ s^4 $的形式反驳了Smale的猜想,通过显示diff $(s^{4})\ neq so(5)$。他通过证明他们的较高同质群是不同的。在这里,我们通过显示$π_{0} $ diff $(s^{4})\ neq 0 $来更直接地证明这一点,否则某些松散的cork不可能是松散的cork。
Recently Watanabe disproved the Smale Conjecture for $S^4$, by showing Diff$(S^{4})\neq SO(5)$. He showed this by proving that their higher homotopy groups are different. Here we prove this more directly by showing $π_{0}$Diff$(S^{4})\neq 0$, otherwise a certain loose-cork could not possibly be a loose-cork.