论文标题
Flbench:用于联合学习的基准套件
FLBench: A Benchmark Suite for Federated Learning
论文作者
论文摘要
联合学习是一种新的机器学习范式。目的是从分布在所谓的孤立数据岛上的多个设备上的数据集中构建机器学习模型,同时确保其数据安全和私密。大多数现有的联合学习基准测试工作手动将常用的公共数据集分配到分区中,以模拟现实世界中孤立的数据岛方案。尽管如此,该模拟仍无法捕获现实世界中孤立的数据岛的内在特征。本文介绍了一个名为Flbench的联邦学习(FL)基准套件。 Flbench包含三个领域:医疗,财务和Aiot。通过配置各种领域,Flbench有资格评估联合学习系统和算法基本方面,例如通信,场景转换,保护隐私,数据分配异质性和合作策略。因此,它成为开发新型联合学习算法的有前途的平台。目前,Flbench是开源的,并且正在快速发展。我们将其作为自动部署工具包装。基准套件可从https://www.benchcouncil.org/flbench.html获得。
Federated learning is a new machine learning paradigm. The goal is to build a machine learning model from the data sets distributed on multiple devices so-called an isolated data island, while keeping their data secure and private. Most existing federated learning benchmarks work manually splits commonly used public datasets into partitions to simulate real world isolated data island scenarios. Still, this simulation fails to capture real world isolated data island intrinsic characteristics. This paper presents a federated learning (FL) benchmark suite named FLBench. FLBench contains three domains: medical, financial, and AIoT. By configuring various domains, FLBench is qualified to evaluate federated learning systems and algorithms essential aspects, like communication, scenario transformation, privacy-preserving, data distribution heterogeneity, and cooperation strategy. Hence, it becomes a promising platform for developing novel federated learning algorithms. Currently, FLBench is open sourced and in fast evolution. We package it as an automated deployment tool. The benchmark suite is available from https://www.benchcouncil.org/flbench.html.