论文标题
LIC-FUSION 2.0:带滑动平面功能跟踪的LIDAR惯性摄像机镜头
LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking
论文作者
论文摘要
来自商品惯性,视觉和激光雷达传感器的多模式测量值的多模式测量值的多传感器融合提供了强大而准确的6DOF姿势估计,在机器人技术及其他方面具有巨大的潜力。在本文中,基于我们先前的工作(即LIC-Fusion),我们开发了基于滑动窗口滤波器的LIDAR惯性相机镜,并通过在线时空校准(即LIC-FUSION 2.0)引入了一种新型的滑动式平面式接头跟踪,以有效处理3D Lidar Lidar Points clouds。特别是,通过利用IMU数据对LIDAR点进行运动补偿后,将在滑动窗口上提取并跟踪低外观平面点。在高质量数据关联的平面功能跟踪中提出了一种新型的异常排斥标准。只有属于同一平面的追踪平面点才能用于平面初始化,这使得平面提取有效且健壮。此外,我们对LIDAR-IMU子系统进行可观察性分析,并使用平面特征报告时空校准的退化病例。虽然在蒙特卡洛模拟中验证了估计一致性和确定的退化运动,但还进行了不同的现实世界实验,以表明所提出的LIC-FUSION 2.0胜过其前身和其他最先进的方法。
Multi-sensor fusion of multi-modal measurements from commodity inertial, visual and LiDAR sensors to provide robust and accurate 6DOF pose estimation holds great potential in robotics and beyond. In this paper, building upon our prior work (i.e., LIC-Fusion), we develop a sliding-window filter based LiDAR-Inertial-Camera odometry with online spatiotemporal calibration (i.e., LIC-Fusion 2.0), which introduces a novel sliding-window plane-feature tracking for efficiently processing 3D LiDAR point clouds. In particular, after motion compensation for LiDAR points by leveraging IMU data, low-curvature planar points are extracted and tracked across the sliding window. A novel outlier rejection criterion is proposed in the plane-feature tracking for high-quality data association. Only the tracked planar points belonging to the same plane will be used for plane initialization, which makes the plane extraction efficient and robust. Moreover, we perform the observability analysis for the LiDAR-IMU subsystem and report the degenerate cases for spatiotemporal calibration using plane features. While the estimation consistency and identified degenerate motions are validated in Monte-Carlo simulations, different real-world experiments are also conducted to show that the proposed LIC-Fusion 2.0 outperforms its predecessor and other state-of-the-art methods.