论文标题

二进制标量产品

Binary scalar products

论文作者

Kupavskii, Andrey, Weltge, Stefan

论文摘要

令$ a,b \ subseteq \ mathbb {r}^d $均span $ \ mathbb {r}^d $,以便$ \ langle a,b \ rangle \ in \ in \ {0,1 \} $ holds in b $ in $ b \ in $ b \ in $ a \ in b $中的所有$ a \。我们证明$ | a | \ CDOT | B | \ le(d+1)2^d $。这使我们能够解决Bohn,Faenza,Fiorini,Fisikopoulos,Macchia和Pashkovich(2015)(2015)的猜想。这样的多面有的属性,对于每个定义的超平面$ h $,都有一个平行的超平面$ h'$,因此$ h \ cup h'$都包含所有顶点。作者推测,对于每$ d $二维的2级polytope $ p $,$ p $的顶点的产品和$ p $的面积的数量最多为$ d 2^{d+1} $,我们表明是正确的。

Let $A,B \subseteq \mathbb{R}^d $ both span $\mathbb{R}^d$ such that $\langle a, b \rangle \in \{0,1\}$ holds for all $a \in A$, $b \in B$. We show that $ |A| \cdot |B| \le (d+1) 2^d $. This allows us to settle a conjecture by Bohn, Faenza, Fiorini, Fisikopoulos, Macchia, and Pashkovich (2015) concerning 2-level polytopes. Such polytopes have the property that for every facet-defining hyperplane $H$ there is a parallel hyperplane $H'$ such that $H \cup H'$ contain all vertices. The authors conjectured that for every $d$-dimensional 2-level polytope $P$ the product of the number of vertices of $P$ and the number of facets of $P$ is at most $d 2^{d+1}$, which we show to be true.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源