论文标题
增强学习的生成设计:增强拓扑优化设计的多样性
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
论文作者
论文摘要
生成设计是指可以在设计师定义的约束下自动进行设计探索的计算设计方法。在许多方法中,基于拓扑优化的生成设计旨在探索各种拓扑设计,而传统的参数设计方法不能表示。最近,数据驱动的拓扑优化研究已开始利用人工智能,例如深度学习或机器学习,以提高设计探索的能力。这项研究提出了一个基于增强的学习(RL)生成设计过程,并具有最大化拓扑设计多样性的奖励功能。我们将生成设计作为一个顺序的问题,即根据给定的参考设计找到最佳设计参数组合。近端政策优化被用作学习框架,这在汽车车轮设计问题的案例研究中得到了证明。为了减少RL公式所需的车轮拓扑优化过程的重大计算负担,我们将其与神经网络相结合。通过有效的数据预处理/增强和神经结构,神经网络具有广义性能和对称性的特征。我们表明,基于RL的生成设计在短时间内通过以完全自动化的方式利用GPU来产生大量不同的设计。它与使用CPU的先前方法不同,CPU需要更多的处理时间并涉及人类干预。
Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention.