论文标题

近端增强拉格朗日方法的迭代复杂性,用于解决非凸复合优化问题,并具有非线性凸约束

Iteration-complexity of a proximal augmented Lagrangian method for solving nonconvex composite optimization problems with nonlinear convex constraints

论文作者

Kong, Weiwei, Melo, Jefferson G., Monteiro, Renato D. C.

论文摘要

本文提出并分析了一种近端增强拉格朗日(NL-iapial)方法,用于解决非线性$ \ cal k $ -convex约束的平滑非convex复合优化问题,即,与封闭的convex锥$ \ cal k $给定的订单相对于限制的限制。每种NL-ia-apial迭代均包括不确定地通过加速的复合梯度(ACG)方法解决近端增强拉格朗日子问题,然后进行Lagrange乘数更新。在某些温和的假设下,表明NL-iapial在$ {\ cal o}中生成了约束问题的近似固定解决方案(\ log(1/ρ)/ρ^{3})$内部迭代,其中$ρ> 0 $是给定的容忍度。还提供了数值实验来说明所提出方法的计算效率。

This paper proposes and analyzes a proximal augmented Lagrangian (NL-IAPIAL) method for solving smooth nonconvex composite optimization problems with nonlinear $\cal K$-convex constraints, i.e., the constraints are convex with respect to the order given by a closed convex cone $\cal K$. Each NL-IAPIAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient (ACG) method followed by a Lagrange multiplier update. Under some mild assumptions, it is shown that NL-IAPIAL generates an approximate stationary solution of the constrained problem in ${\cal O}(\log(1/ρ)/ρ^{3})$ inner iterations, where $ρ>0$ is a given tolerance. Numerical experiments are also given to illustrate the computational efficiency of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源