论文标题
偏斜舒伯特多项式的图表公式
Tableau formulas for skew Schubert polynomials
论文作者
论文摘要
偏斜的舒伯特多项式是从arxiv的意义上:0812.0639的意义上,由weyl群的偏斜元素索引。我们在所有四种经典的谎言类型中获得了这些多项式的双重版本的图表公式,其中所使用的tableaux是相关偏斜型幼小图的填充物。即使在单一情况下,这些是符号和正交舒伯特多项式的第一个定理。我们还推断出用于双重舒尔,双theta和双Eta多项式的Tableau公式,他们的专长为双grassmannian schubert多项式。后者的结果概括了由于Littlewood(A型)和作者(在B型,C,C和D中)引起的对称(和单个)舒伯特多项式的图表公式。
The skew Schubert polynomials are those which are indexed by skew elements of the Weyl group, in the sense of arXiv:0812.0639. We obtain tableau formulas for the double versions of these polynomials in all four classical Lie types, where the tableaux used are fillings of the associated skew Young diagram. These are the first such theorems for symplectic and orthogonal Schubert polynomials, even in the single case. We also deduce tableau formulas for double Schur, double theta, and double eta polynomials, in their specializations as double Grassmannian Schubert polynomials. The latter results generalize the tableau formulas for symmetric (and single) Schubert polynomials due to Littlewood (in type A) and the author (in types B, C, and D).