论文标题
使用全局优化的基于触点图的晶体结构预测
Contact Map based Crystal Structure Prediction using Global Optimization
论文作者
论文摘要
晶体结构预测现在在发现新材料中起着越来越重要的作用。全球优化方法,例如遗传算法(GA)和粒子群优化(PSO)已与第一个主要自由能计算结合使用,以预测给定组成或仅化学系统的晶体结构。尽管这些方法可以利用搜索过程中的某些晶体模式,例如对称性和周期性,但它们通常不会利用大量已知晶体结构中体现的原子构型的大量隐式规则和约束。他们目前只能处理相对较小的系统的晶体结构预测。受知识富含蛋白质结构预测方法的启发,我们在本文中探讨了诸如目标晶体材料的原子接触图等已知的几何约束是否可以帮助预测其空间组信息的结构。我们提出了一种基于原子接触图的晶体结构重建的基于全局优化的算法CMCrystal。基于使用六种全球优化算法的广泛实验,我们表明,在某些晶体材料的原子接触图下,可以重建晶体结构,但需要更多的限制来实现成功重建的其他目标材料。这意味着从现有材料中学到的原子相互作用信息可用于改善晶体结构预测。
Crystal structure prediction is now playing an increasingly important role in discovery of new materials. Global optimization methods such as genetic algorithms (GA) and particle swarm optimization (PSO) have been combined with first principle free energy calculations to predict crystal structures given composition or only a chemical system. While these approaches can exploit certain crystal patterns such as symmetry and periodicity in their search process, they usually do not exploit the large amount of implicit rules and constraints of atom configurations embodied in the large number of known crystal structures. They currently can only handle crystal structure prediction of relatively small systems. Inspired by the knowledge-rich protein structure prediction approach, herein we explore whether known geometric constraints such as the atomic contact map of a target crystal material can help predict its structure given its space group information. We propose a global optimization based algorithm, CMCrystal, for crystal structure reconstruction based on atomic contact maps. Based on extensive experiments using six global optimization algorithms, we show that it is viable to reconstruct the crystal structure given the atomic contact map for some crystal materials but more constraints are needed for other target materials to achieve successful reconstruction. This implies that atomic interaction information learned from existing materials can be used to improve crystal structure prediction.