论文标题

深度学习预测肺癌筛查的心血管疾病风险低剂量计算机断层扫描

Deep Learning Predicts Cardiovascular Disease Risks from Lung Cancer Screening Low Dose Computed Tomography

论文作者

Chao, Hanqing, Shan, Hongming, Homayounieh, Fatemeh, Singh, Ramandeep, Khera, Ruhani Doda, Guo, Hengtao, Su, Timothy, Wang, Ge, Kalra, Mannudeep K., Yan, Pingkun

论文摘要

癌症患者患心血管疾病(CVD)死亡率的风险高于一般人群。用于肺癌筛查的低剂量计算机断层扫描(LDCT)为处于危险患者的同时CVD风险估计提供了机会。我们深入学习的CVD风险预测模型,在国家肺癌筛查试验中接受了30,286个LDCT训练,在曲线(AUC)下达到0.871的区域为0.871,在2085名受试者的单独测试集中,并确定了具有高CVD死亡率的患者(AUC为0.768)。我们针对基于ECG的心脏CT标记验证了我们的模型,包括冠状动脉钙化(CAC)得分,CAD-RADS评分和MESA 10年风险分数,来自335名受试者的独立数据集。我们的工作表明,在高危患者中,深度学习可以将LDCT转化为肺癌筛查的LDCT,以进行双筛查定量工具,以进行CVD风险估计。

Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer Screening Trial, achieved an area under the curve (AUC) of 0.871 on a separate test set of 2,085 subjects and identified patients with high CVD mortality risks (AUC of 0.768). We validated our model against ECG-gated cardiac CT based markers, including coronary artery calcification (CAC) score, CAD-RADS score, and MESA 10-year risk score from an independent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD risk estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源