论文标题
多目标团队基准问题的半分析解决方案
Semi-Analytical Solution for a Multi-Objective TEAM Benchmark Problem
论文作者
论文摘要
基准测试对于测试新的数值分析代码至关重要。他们的解决方案对于测试部分微分方程求解器以及两者都对优化方法至关重要。特别是,基于自然启发的优化算法的求解器,其中一项重要的研究是使用基准函数来测试与其他算法相比,与其他算法相比,新算法的性能或优化器参数相比。本文提出了多目标T.E.A.M基准问题的新型半分析解决方案。基准问题的目的是优化线圈的布局,并在给定区域提供均匀的磁场。所提出的方法是在开源鲁棒设计优化框架ārtap中实现的,并且将溶液的精度与完全HP自适应的数值求解器:Agros-Suite进行了比较。线圈布局优化是通过无衍生的非线性方法和NSGA-II算法进行的。
Benchmarking is essential for testing new numerical analysis codes. Their solution is crucial both for testing the partial differential equation solvers and both for the optimization methods. Especially, nature-inspired optimization algorithm-based solvers, where is an important study is to use benchmark functions to test how the new algorithm may perform, in comparison with other algorithms or fine-tune the optimizer parameters. This paper proposes a novel semi-analytical solution of the multi-objective T.E.A.M benchmark problem. The goal of the benchmark problem is to optimize the layout of a coil and provide a uniform magnetic field in the given region. The proposed methodology was realized in the open-source robust design optimization framework Ārtap, and the precision of the solution is compared with the result of a fully hp-adaptive numerical solver: Agros-suite. The coil layout optimization was performed by derivative-free non-linear methods and the NSGA-II algorithm.