论文标题
tempnodeemb:考虑时间边缘影响矩阵的时间节点嵌入
TempNodeEmb:Temporal Node Embedding considering temporal edge influence matrix
论文作者
论文摘要
了解现实世界中不断发展的复杂系统(例如人类互动,运输网络,生物学互动和计算机网络)的进化模式对我们的日常生活具有重要意义。预测此类网络中节点之间的未来联系揭示了时间网络发展的重要方面。为了分析网络,它们被映射到邻接矩阵,但是,单个邻接矩阵不能表示复杂的关系(例如时间模式),因此,某些方法考虑了时间网络的简化表示,但在高维且通常稀疏的矩阵中。结果,机器学习模型不能直接使用邻接矩阵来制作网络或节点级别的预测。为了克服这个问题,提出了自动化框架,用于学习节点或边缘的低维矢量,作为预测诸如链接预测等网络的时间模式的最新技术。但是,这些模型无法考虑网络的时间维度。这一差距促使我们在这项研究中提出了一种新的节点嵌入技术,该技术利用了在每个时间步骤中考虑一个简单的三层图神经网络的网络不断发展的性质,并通过给定角度方法提取节点方向。为了证明我们提出的算法的效率,我们评估了我们提出的算法对六个最先进的基准网络嵌入模型的效率,在四个真实的时间网络数据上,结果表明,我们的模型比预测时间网络中未来联系的其他方法都超过了其他方法。
Understanding the evolutionary patterns of real-world evolving complex systems such as human interactions, transport networks, biological interactions, and computer networks has important implications in our daily lives. Predicting future links among the nodes in such networks reveals an important aspect of the evolution of temporal networks. To analyse networks, they are mapped to adjacency matrices, however, a single adjacency matrix cannot represent complex relationships (e.g. temporal pattern), and therefore, some approaches consider a simplified representation of temporal networks but in high-dimensional and generally sparse matrices. As a result, adjacency matrices cannot be directly used by machine learning models for making network or node level predictions. To overcome this problem, automated frameworks are proposed for learning low-dimensional vectors for nodes or edges, as state-of-the-art techniques in predicting temporal patterns in networks such as link prediction. However, these models fail to consider temporal dimensions of the networks. This gap motivated us to propose in this research a new node embedding technique which exploits the evolving nature of the networks considering a simple three-layer graph neural network at each time step, and extracting node orientation by Given's angle method. To prove our proposed algorithm's efficiency, we evaluated the efficiency of our proposed algorithm against six state-of-the-art benchmark network embedding models, on four real temporal networks data, and the results show our model outperforms other methods in predicting future links in temporal networks.