论文标题

诗人:电子商务面向产品的视频字幕

Poet: Product-oriented Video Captioner for E-commerce

论文作者

Zhang, Shengyu, Tan, Ziqi, Yu, Jin, Zhao, Zhou, Kuang, Kun, Liu, Jie, Zhou, Jingren, Yang, Hongxia, Wu, Fei

论文摘要

在电子商务中,越来越多的用户生成的视频用于产品推广。如何生成视频描述来叙述视频中描述的用户偏爱的产品特征对于成功推广至关重要。传统的视频字幕方法的重点是定期描述视频中存在和发生的情况,不适合以产品为导向的视频字幕。为了解决这个问题,我们提出了一个面向产品的视频字幕框架,缩写为诗人。诗人首先将视频表示为面向产品的时空图。然后,基于视频相关产品的各个方面,我们对这些图表进行了知识增强的时空推断,以捕获细粒度的产品零件特征的动态变化。通过执行知识过滤和动态内存建模,诗人中利用模块的知识与传统设计不同。我们表明,诗人比以前有关发电质量,捕获产品方面和词汇多样性的方法实现了一致的绩效。实验是在两个面向产品的视频字幕数据集(购买者生成的时尚视频数据集(BFVD)和粉丝生成的时尚视频数据集(FFVD)(FFVD)上进行的,该实验是从移动TAOBAO收集的。我们将发布脱敏数据集,以促进有关视频字幕和一般视频分析问题的进一步调查。

In e-commerce, a growing number of user-generated videos are used for product promotion. How to generate video descriptions that narrate the user-preferred product characteristics depicted in the video is vital for successful promoting. Traditional video captioning methods, which focus on routinely describing what exists and happens in a video, are not amenable for product-oriented video captioning. To address this problem, we propose a product-oriented video captioner framework, abbreviated as Poet. Poet firstly represents the videos as product-oriented spatial-temporal graphs. Then, based on the aspects of the video-associated product, we perform knowledge-enhanced spatial-temporal inference on those graphs for capturing the dynamic change of fine-grained product-part characteristics. The knowledge leveraging module in Poet differs from the traditional design by performing knowledge filtering and dynamic memory modeling. We show that Poet achieves consistent performance improvement over previous methods concerning generation quality, product aspects capturing, and lexical diversity. Experiments are performed on two product-oriented video captioning datasets, buyer-generated fashion video dataset (BFVD) and fan-generated fashion video dataset (FFVD), collected from Mobile Taobao. We will release the desensitized datasets to promote further investigations on both video captioning and general video analysis problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源