论文标题
浮标二阶拓扑绝缘子在非铁井系统中
Floquet second-order topological insulators in non-Hermitian systems
论文作者
论文摘要
二阶拓扑绝缘子(SOTI)的特征是$(d-2)$ - 尺寸边界状态在$ d $ dimension系统中。非热性诱导的散装对应关系(BBC)的分解和系统的周期性驾驶通常掩盖了非弱者SOTI的描述。为了提示Sotis的应用,我们探讨了定期驾驶在可控创建2D和3D系统中的异国情调的非索蒂斯的作用。提出了一种通过此类非平衡系统的批量拓扑来检索BBC的方案和对Sotis的完整描述。发现具有周期性驾驶会引起丰富的外来的非热索蒂斯,具有广泛可调的2D角状态和3D铰链状态,一阶和二阶拓扑绝缘子的共存。我们的结果丰富了拓扑阶段的家庭,可能会激发探索通过定期驾驶来调整角/铰链状态的数量来应用sotis。
Second-order topological insulator (SOTI) is featured with the presence of $(d-2)$-dimensional boundary states in $d$-dimension systems. The non-Hermiticity induced breakdown of bulk-boundary correspondence (BBC) and the periodic driving on systems generally obscure the description of non-Hermitian SOTI. To prompt the applications of SOTIs, we explore the role of periodic driving in controllably creating exotic non-Hermitian SOTIs both for 2D and 3D systems. A scheme to retrieve the BBC and a complete description to SOTIs via the bulk topology of such nonequilibrium systems are proposed. It is found that rich exotic non-Hermitian SOTIs with a widely tunable number of 2D corner states and 3D hinge states and a coexistence of the first- and second-order topological insulators are induced by the periodic driving. Enriching the family of topological phases, our result may inspire the exploration to apply SOTIs via tuning the number of corner/hinge states by the periodic driving.