论文标题

Tableau-Cyclic Innecomposable $ H_N(0)$ - 模块的投影封面

The projective cover of tableau-cyclic indecomposable $H_n(0)$-modules

论文作者

Choi, Seung-Il, Kim, Young-Hun, Nam, Sun-Young, Oh, Young-Tak

论文摘要

令$α$为$ n $的组成,$ = $ a $ \ mathfrak {s} _ {\ ell(α)} $中的排列。 This paper concerns the projective covers of $H_n(0)$-modules $\mathcal{V}_α$, $X_α$ and $\mathbf{S}^σ_α$, which categorify the dual immaculate quasisymmetric function, the extended Schur function, and the quasisymmetric Sc​​hur function when $σ$ is the identity, respectively.首先,我们表明$ \ Mathcal {V}_α$的投影封面是诺顿(Norton)的投影不可兼容的模块$ \ mathbf {p}_α$,$x_α$和$x_α$和$ ϕ $ -twist canonicalical submodule $ \ mathbf { $ \ MATHBF {s}^σ_β$ for $(β,σ)$满足适当条件的$ h_n(0)$ - $ \ MATHCAL {v}_α$的同构图像。其次,我们介绍了$ \ mathbf {s}^σ_α$的$ ϕ $ -TWIST的组合模型,并从$ \ Mathbf {p}_α$中得出一系列过滤量,以$ \ mathbf {p}_α$到$ ϕ $ -twist $ -twist $ -twist of $ -dwist $ -twist of $ \ \ mathbf {s}} {s}^^^{\ mathrmmath}最后,我们构建了$ \ mathbf {s}^σ_α$的每个难以解决的直接summ $ \ mathbf {s}^σ_{α,e} $。作为副产品,我们给出了三倍$(σ,α,e)$的特征,使得$ \ m \ m \ mthbf {s}^σ_{α,e} $的投影覆盖物是不可兼容的。

Let $α$ be a composition of $n$ and $σ$ a permutation in $\mathfrak{S}_{\ell(α)}$. This paper concerns the projective covers of $H_n(0)$-modules $\mathcal{V}_α$, $X_α$ and $\mathbf{S}^σ_α$, which categorify the dual immaculate quasisymmetric function, the extended Schur function, and the quasisymmetric Schur function when $σ$ is the identity, respectively. First, we show that the projective cover of $\mathcal{V}_α$ is the projective indecomposable module $\mathbf{P}_α$ due to Norton, and $X_α$ and the $ϕ$-twist of the canonical submodule $\mathbf{S}^σ_{β,C}$ of $\mathbf{S}^σ_β$ for $(β,σ)$'s satisfying suitable conditions appear as $H_n(0)$-homomorphic images of $\mathcal{V}_α$. Second, we introduce a combinatorial model for the $ϕ$-twist of $\mathbf{S}^σ_α$ and derive a series of surjections starting from $\mathbf{P}_α$ to the $ϕ$-twist of $\mathbf{S}^{\mathrm{id}}_{α,C}$. Finally, we construct the projective cover of every indecomposable direct summand $\mathbf{S}^σ_{α, E}$ of $\mathbf{S}^σ_α$. As a byproduct, we give a characterization of triples $(σ, α, E)$ such that the projective cover of $\mathbf{S}^σ_{α, E}$ is indecomposable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源