论文标题

基于低维材料的低维电相调制性能分析

Low Dimensional Material based Electro-Optic Phase Modulation Performance Analysis

论文作者

Amin, Rubab, Maiti, Rishi, Khurgin, Jacob B., Sorger, Volker J.

论文摘要

电磁调节器被普遍存在,从数据通信的应用到光子神经网络。尽管多年来取得了巨大的进步,但有效的相移调制器受到基本权衡的挑战,例如电压长度,指数变化损失或能量宽度,没有任何单个解决方案可用检查所有框。尽管电压驱动的相位调节剂(例如基于Niobate锂)提供了低损耗和高速运行,但它们的CM尺度10尺寸的占地面积非常大,尤其是对于关键密度的应用,例如在光子神经网络中。忽略量子应用的调制器,其中损失至关重要,在这里我们区分当前与电压驱动的调制器。我们专注于前者,因为新兴的薄电流材料的当前基础方案已显示出适合在铸造波导中异质整合的统一指数调制。在这里,我们基于非均质的低维材料,即石墨烯,二氧化物氧化物氧化物的薄膜和过渡金属二甲化元素单层的薄膜,对可获得的调节剂性能进行了深入的ABINIO分析。我们将能量带宽产品的基本调制器折衷作为设计质量的量词,我们表明一个小型的模态横截面(例如由等离子模式给出的小型模态)可以实现高性能操作,这是通过对电荷 - 分布和低电阻的论点进行物理上实现的。对相位调节器性能的深入设计理解,除了硅的掺杂界面之外,还为微型计算但能量带宽比率约束的调节器提供了机会,这些调制器具有及时的机会,可以使硬件应用程序超出数据通信的光子机器智能。

Electro-optic modulators are utilized ubiquitously ranging from applications in data communication to photonic neural networks. While tremendous progress has been made over the years, efficient phase-shifting modulators are challenged with fundamental tradeoffs, such as voltage-length, index change-losses or energy-bandwidth, and no single solution available checks all boxes. While voltage-driven phase modulators, such as based on lithium niobate, offer low loss and high speed operation, their footprint of 10's of cm-scale is prohibitively large, especially for density-critical applications, for example in photonic neural networks. Ignoring modulators for quantum applications, where loss is critical, here we distinguish between current versus voltage-driven modulators. We focus on the former, since current-based schemes of emerging thin electro-optical materials have shown unity-strong index modulation suitable for heterogeneous integration into foundry waveguides. Here, we provide an in-depth ab-initio analysis of obtainable modulator performance based on heterogeneously integrating low-dimensional materials, i.e. graphene, thin films of indium tin oxide, and transition metal dichalcogenide monolayers into a plurality of optical waveguide designs atop silicon photonics. Using the fundamental modulator tradeoff of energy-bandwidth-product as a design-quality quantifier, we show that a small modal cross section, such as given by plasmonic modes, enables high-performance operation, physically realized by arguments on charge-distribution and low electrical resistance. An in-depth design understanding of phase-modulator performance, beyond doped-junctions in silicon, offers opportunities for micrometer-compact yet energy-bandwidth-ratio constrained modulators with timely opportunities to hardware-accelerate applications beyond data communication towards photonic machine intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源