论文标题
黄金纳米层的谐波生成:新光线下的一个旧问题
Harmonic generation from gold nanolayers: an old problem under a new light
论文作者
论文摘要
如果一个人要适当地设计纳米 - 安南,过滤器以及更普遍的设备,旨在利用新的物理现象的影响,那么在纳米级与金属,半导体或普通电介质的相互作用如何相互作用至关重要。目前,我们报告了针对TE-和TM极化的入射光脉冲的第二和第三次谐波生成的实验结果。我们首次在第三次谐波生成中首次强调和讨论相对角色结合电子和依赖强度的自由电子密度(热电子)。尽管平面结构通常是最简单的制造,但几乎从未研究过只有几纳米厚且部分透明的金属层。然而,传输提供了一个额外的参考点,用于比较,通过相对简单的实验测量,它为测试可用理论模型的准确性提供了机会。在模拟第二和第三次谐波转换效率的微观流体动力模型的背景下,我们对我们的实验结果进行了很好的解释,并同时且独特地预测了在脉冲照明下金纳米层的非线性分散性能。使用我们的实验观察和模型,仅基于测得的第三谐波功率转换效率,我们预测| Chi3 | 〜10^( - 18)-10^( - 17)(-17)(m/v)^2,主要由热电子触发,而无需诉诸于实施Z-Scan设置。
Understanding how light interacts at the nanoscale with metals, semiconductors, or ordinary dielectrics is pivotal if one is to properly engineer nano-antennas, filters and, more generally, devices that aim to harness the effects of new physical phenomena that manifest themselves at the nanoscale. We presently report experimental results on second and third harmonic generation from 20nm- and 70nm-thick gold layers, for TE- and TM-polarized incident light pulses. We highlight and discuss for the first time the relative roles bound electrons and an intensity dependent free electron density (hot electrons) play in third harmonic generation. While planar structures are generally the simplest to fabricate, metal layers that are only a few nanometers thick and partially transparent are almost never studied. Yet, transmission offers an additional reference point for comparison, which through relatively simple experimental measurements affords the opportunity to test the accuracy of available theoretical models. Our experimental results are explained well within the context of the microscopic hydrodynamic model that we employ to simulate second and third harmonic conversion efficiencies, and to simultaneously and uniquely predict the nonlinear dispersive properties of a gold nanolayer under pulsed illumination. Using our experimental observations and our model, based solely on the measured third harmonic power conversion efficiencies we predict |chi3|~10^(-18)-10^(-17)(m/V)^2, triggered mostly by hot electrons, without resorting to the implementation of a z-scan set-up.