论文标题
MobileVisfixer:为手机剪裁网络可视化,利用可解释的增强学习框架
MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework
论文作者
论文摘要
我们为MobileVisfixer提供了贡献,这是一种使可视化更加移动友好的新方法。尽管移动设备已成为访问网络上信息的主要手段,但许多现有的可视化量未针对小屏幕进行优化,并且可能导致令人沮丧的用户体验。当前,从业人员和研究人员必须进行繁琐且耗时的过程,以确保其设计规模缩放到不同尺寸的屏幕,现有工具包和图书馆在诊断和修复问题方面几乎没有支持。为了应对这一挑战,MobileVisfixer通过新颖的增强学习框架自动化移动友好的可视化重新设计过程。为了告知MobileVisfixer的设计,我们首先在网络上收集并分析了基于SVG的可视化,并确定了五个常见的移动友好型问题。 MobileVisfixer通过Markov决策过程模型在单次笛卡尔可视化上以线性或离散量表的形式解决了其中四个问题,这些模型既可以在各种可视化中概括,又可以完全解释。 MobileVisfixer将图表分解为声明的格式,并使用基于策略梯度方法的贪婪启发式方法来找到解决方案,以解决合理时间内这种困难的多标准优化问题。此外,通过合并用于数据可视化的优化算法,可以轻松扩展移动电视号。对两个现实世界数据集的定量评估证明了我们方法的有效性和概括性。
We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.