论文标题
随机对流Brinkman-Forchheimer方程的平均原理
Averaging principle for the stochastic convective Brinkman-Forchheimer equations
论文作者
论文摘要
对流的Brinkman-Forchheimer方程描述了在饱和多孔介质中不可压缩流体流动的运动。这项工作研究了在两个和三维有界域中被乘性高斯噪声扰动的多尺度对流Brinkman-Forchheimer(SCBF)方程。我们为随机2D SCBF方程建立了强大的平均原理,该原理包含一个由随机反应扩散方程控制的快速时间尺度成分,并由由多种高斯噪声驱动的阻尼。我们在证明中利用Khasminkii的时间离散方法。
The convective Brinkman-Forchheimer equations describe the motion of incompressible fluid flows in a saturated porous medium. This work examines the multiscale stochastic convective Brinkman-Forchheimer (SCBF) equations perturbed by multiplicative Gaussian noise in two and three dimensional bounded domains. We establish a strong averaging principle for the stochastic 2D SCBF equations, which contains a fast time scale component governed by a stochastic reaction-diffusion equation with damping driven by multiplicative Gaussian noise. We exploit the Khasminkii's time discretization approach in the proofs.