论文标题

小组测试可以无症状的筛查相互作用-19缓解措施:可行性和最佳池尺寸选择,并具有稀释效果

Group Testing Enables Asymptomatic Screening for COVID-19 Mitigation: Feasibility and Optimal Pool Size Selection with Dilution Effects

论文作者

Lin, Yifan, Ren, Yuxuan, Wan, Jingyuan, Cashore, Massey, Wan, Jiayue, Zhang, Yujia, Frazier, Peter, Zhou, Enlu

论文摘要

对SARS-COV-2的反复筛查有望控制病毒的传播,但需要太多资源来大规模实施。小组测试是有望筛查更多具有较少测试资源的人:在一个池中一起测试的多个样本可以被排除在一个阴性测试结果中。但是,现有的SARS-COV-2无症状筛查的小组测试设计方法不考虑稀释效应:假阴性在较大的池中变得更加普遍。结果,他们可能会建议泳池尺寸太大或误会了筛选的好处。建模稀释效应,我们得出了预期的测试数量和在两种流行组测试方法下筛选的预期测试次数的封闭形式表达式:线性和方形阵列方法。我们发现,在一个人的样本中常见的病毒载荷引起的测试误差相关性导致的假阴性比较不现实但更广泛地假定的独立错误所期望的较少。该见解还表明,可以通过重复测试来控制假阳性而不会显着增加假否定性。使用这些封闭形式的表达式来追踪帕累托前沿,而不是错误率和测试,我们设计了用于重复较大人群无症状筛查的测试方案。我们通过优化随时间变化的池尺寸和受每日测试能力限制的筛选频率和假阳性极限来最大程度地减少疾病的患病率。这提供了测试协议从业人员可以用于减轻Covid-19。在案例研究中,我们证明了这种方法在控制扩散方面的有效性。

Repeated asymptomatic screening for SARS-CoV-2 promises to control spread of the virus but would require too many resources to implement at scale. Group testing is promising for screening more people with fewer test resources: multiple samples tested together in one pool can be excluded with one negative test result. Existing approaches to group testing design for SARS-CoV-2 asymptomatic screening, however, do not consider dilution effects: that false negatives become more common with larger pools. As a consequence, they may recommend pool sizes that are too large or misestimate the benefits of screening. Modeling dilution effects, we derive closed-form expressions for the expected number of tests and false negative/positives per person screened under two popular group testing methods: the linear and square array methods. We find that test error correlation induced by a common viral load across an individual's samples results in many fewer false negatives than would be expected from less realistic but more widely assumed independent errors. This insight also suggests that false positives can be controlled through repeated tests without significantly increasing false negatives. Using these closed-form expressions to trace a Pareto frontier over error rates and tests, we design testing protocols for repeated asymptomatic screening of a large population. We minimize disease prevalence by optimizing a time-varying pool sizes and screening frequency constrained by daily test capacity and a false positive limit. This provides a testing protocol practitioners can use for mitigating COVID-19. In a case study, we demonstrate the effectiveness of this methodology in controlling spread.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源