论文标题
使用Echo-Piv
Vortex dynamics and transport phenomena in stenotic aortic models using Echo-PIV
论文作者
论文摘要
在这项工作中,我们提出了一种新颖的方法,该方法将超声波与欧拉和拉格朗日描述符结合在一起,以分析具有形态,机械和光学特性的狭窄主动脉模型中的血流动力学和流体转运,与真实动脉的机械和光学特性。为此,从实验性流体速度速度场中计算了使用超声粒子成像速度仪(ECHO-PIV)获取的实验流体速度场(ECHO-PIV),计算了从实验流体速度场(ECHO-PIV)计算的涡度,粒子停留时间(PRT),粒子的最终位置(FP)和有限的时间Lyapunov的指数(FTLE)。对于实验,使用CT图像来创建具有0%,35%和50%闭塞度的降主动脉的形态现实模型,其机械性能与真实动脉相同。每个模型都连接到具有可编程泵的电路,该泵模仿生理流动和压力条件。脉冲频率设置为0.9 Hz(55 bpm),上游峰雷诺数(RE)从1100变为2000。延伸后区域的流量由两个主要结构组成:高速射流的高速射流在狭窄喉咙上的高速射流和一个在狭窄区域后面的再循环区域,其中Vortex形成了Vortex和Sheed。我们表征了涡旋运动学,表明涡旋传播速度随RE的增加而增加。此外,从FTLE领域,我们发现了拉格朗日相干结构(即物质屏障),这些结构决定了狭窄背后的运输。这些障碍的大小和强度随着RE和遮挡程度而增加。最后,从PRT和FP来看,我们表明,与RE无关,相同数量的液体在狭窄的时间内仍然超过了脉冲时期,而脉冲时期与较大的FTLE值相结合可能会提供一种理解狭窄生长的另一种方法。
In this work, we propose a novel approach which combines ultrasound with Eulerian and Lagrangian descriptors, to analyse blood flow dynamics and fluid transport in stenotic aortic models with morphology, mechanical and optical properties close to those of real arteries. To this end, vorticity, particle residence time (PRT), particle's final position (FP) and finite time Lyapunov's exponents (FTLE) were computed from the experimental fluid velocity fields acquired using ultrasonic particle imaging velocimetry (Echo-PIV). For the experiments, CT-images were used to create morphological realistic models of the descending aorta with 0%, 35% and 50% occlusion degree with same mechanical properties as real arteries. Each model was connected to a circuit with a pulsatile programmable pump which mimics physiological flow and pressure conditions. The pulsatile frequency was set to 0.9 Hz (55 bpm) and the upstream peak Reynolds number (Re) was changed from 1100 to 2000. Flow in the post-stenotic region was composed of two main structures: a high velocity jet over the stenosis throat and a recirculation region behind the stenosis where vortex form and shed. We characterized vortex kinematics showing that vortex propagation velocity increases with Re. Moreover, from the FTLE field we identified Lagrangian Coherent Structures (i.e. material barriers) that dictate transport behind the stenosis. The size and strength of those barriers increased with Re and the occlusion degree. Finally, from the PRT and FP, we showed that independently of Re, the same amount of fluid remains on the stenosis over more than a pulsatile period, which combined with large FTLE values may provide an alternative way to understand stenosis growth.