论文标题

有监督的拓扑图

Supervised Topological Maps

论文作者

Mannella, Francesco

论文摘要

控制神经网络的内部表示空间是一个理想的功能,因为它允许以监督方式生成新数据。在本文中,我们将通过从自组织地图(SOMS)开始的广义算法来构建输入流的低维映射时如何实现这一目标。 SOM是一种神经网络,可以通过无监督的学习来训练,以产生输入空间的低维映射。它们可以通过向后传播映射网格制成的插值来生成新数据。不幸的是,在学习之前,SOM映射空间的最终拓扑是不知道的,因此以监督方式插值新数据并不是一件容易的事。在这里,我们将显示与SOM算法的变化,该算法包括约束原型的更新,因此它也是其原型与映射空间中外部给定目标的距离的函数。我们将证明我们将如何称呼有监督的拓扑图(STM),允许在映射空间中内部表示位置的位置由实验者确定的监督映射。控制STM中的内部表示空间比使用其他算法(例如变异或对抗性自动编码器)当前完成的任务更容易。

Controlling the internal representation space of a neural network is a desirable feature because it allows to generate new data in a supervised manner. In this paper we will show how this can be achieved while building a low-dimensional mapping of the input stream, by deriving a generalized algorithm starting from Self Organizing Maps (SOMs). SOMs are a kind of neural network which can be trained with unsupervised learning to produce a low-dimensional discretized mapping of the input space. They can be used for the generation of new data through backward propagation of interpolations made from the mapping grid. Unfortunately the final topology of the mapping space of a SOM is not known before learning, so interpolating new data in a supervised way is not an easy task. Here we will show a variation from the SOM algorithm consisting in constraining the update of prototypes so that it is also a function of the distance of its prototypes from extrinsically given targets in the mapping space. We will demonstrate how such variants, that we will call Supervised Topological Maps (STMs), allow for a supervised mapping where the position of internal representations in the mapping space is determined by the experimenter. Controlling the internal representation space in STMs reveals to be an easier task than what is currently done using other algorithms such as variational or adversarial autoencoders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源