论文标题

使用弱标记的视频的深层域适应性疼痛强度估计的序数回归

Deep Domain Adaptation for Ordinal Regression of Pain Intensity Estimation Using Weakly-Labelled Videos

论文作者

Praveen, R. Gnana, Granger, Eric, Cardinal, Patrick

论文摘要

从视频中捕获的面部表情估算疼痛强度的估计具有巨大的医疗保健应用潜力。鉴于与面部表情的主观变化和操作捕获条件相关的挑战,识别面部表情的最先进模型的准确性可能会下降。已经广泛探索了域的适应性,以减轻域移动问题的问题,这些域移动问题通常在各种源和目标域捕获的视频数据之间发生。此外,鉴于收集和注释视频的艰辛任务以及由于邻近强度水平之间的歧义而引起的主观偏见,因此,弱监督的学习在此类应用中引起了人们的关注。最先进的WSL模型通常被称为回归问题,并且不利用疼痛强度水平之间的顺序关系,也不利用多个连续帧的时间连贯性。本文介绍了一种新的DL模型,用于使用序数回归的弱监督DA模型,该模型可以使用目标域视频进行调整,并具有定期提供的粗标签。 WSDA-OR模型在分配给目标序列的强度级别之间强度级别的关系,并将多个相关帧与序列级别的标签相关联。特别是,它通过将多个实例学习与深层对抗性DA集成,在其中使用柔软的高斯标签来有效地表示来自目标域的弱序列序列级标签,从而学习了判别和域不变特征表示。使用Recola视频数据集作为完全标记的源域数据验证了所提出的方法,而UNBC-MCMASTER肩痛视频数据集则是弱标记的目标域数据。我们还在生物阶段和疲劳数据集上验证了WSDA或序列水平估计。

Estimation of pain intensity from facial expressions captured in videos has an immense potential for health care applications. Given the challenges related to subjective variations of facial expressions, and operational capture conditions, the accuracy of state-of-the-art DL models for recognizing facial expressions may decline. Domain adaptation has been widely explored to alleviate the problem of domain shifts that typically occur between video data captured across various source and target domains. Moreover, given the laborious task of collecting and annotating videos, and subjective bias due to ambiguity among adjacent intensity levels, weakly-supervised learning is gaining attention in such applications. State-of-the-art WSL models are typically formulated as regression problems, and do not leverage the ordinal relationship among pain intensity levels, nor temporal coherence of multiple consecutive frames. This paper introduces a new DL model for weakly-supervised DA with ordinal regression that can be adapted using target domain videos with coarse labels provided on a periodic basis. The WSDA-OR model enforces ordinal relationships among intensity levels assigned to target sequences, and associates multiple relevant frames to sequence-level labels. In particular, it learns discriminant and domain-invariant feature representations by integrating multiple instance learning with deep adversarial DA, where soft Gaussian labels are used to efficiently represent the weak ordinal sequence-level labels from target domain. The proposed approach was validated using RECOLA video dataset as fully-labeled source domain data, and UNBC-McMaster shoulder pain video dataset as weakly-labeled target domain data. We have also validated WSDA-OR on BIOVID and Fatigue datasets for sequence level estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源