论文标题

在向日葵上,以$ k $ - 空格的身份,成对相交

On the sunflower bound for $k$-spaces, pairwise intersecting in a point

论文作者

Blokhuis, Aart, De Boeck, Maarten, D'haeseleer, Jozefien

论文摘要

$ t $ - 启动常数尺寸子空间代码$ c $是投影空间pg(n,q)中的$ k $维子空间,其中独特的子空间在$ t $二维的子空间中相交。此类代码的经典示例是向日葵,其中所有子空间都通过相同的$ t $ -space。向日葵界指出,如果$ | c |,这种代码是向日葵> \ left(\ frac {q^{k + 1} - q^{t + 1}} {q -1} \ right)^2 + \ left(\ frac {q^{k + 1} - q^{k + 1} - q^{t + 1}}}}}} {q -1} {q -1}} \ right) + 1 $。在本文中,我们将查看$ t = 0 $的情况,我们将以$ q \ geq 9 $:$ q \ geq 9 $:$ \ nathcal {s} $ $ k $ - spaces的$ k $ - spaces的$ k $ spaces(n,q),$ q \ geq 9 $,成对相交的一点点是示威者,如果$ | \ nathcal calcal calcal calcal calcal calcal calcal {s} \左(\ frac {2} {\ sqrt [6] {q}} + \ frac {4} {\ sqrt [3] {q}}} - \ frac {5} {5} {\ sqrt {\ sqrt {q}}}}}}}} \ right) 1} \ right)^2 $。

A $t$-intersecting constant dimension subspace code $C$ is a set of $k$-dimensional subspaces in a projective space PG(n,q), where distinct subspaces intersect in a $t$-dimensional subspace. A classical example of such a code is the sunflower, where all subspaces pass through the same $t$-space. The sunflower bound states that such a code is a sunflower if $|C| > \left( \frac {q^{k + 1} - q^{t + 1}}{q - 1} \right)^2 + \left( \frac {q^{k + 1} - q^{t + 1}}{q - 1} \right) + 1$. In this article we will look at the case $t=0$ and we will improve this bound for $q\geq 9$: a set $\mathcal{S}$ of $k$-spaces in PG(n,q), $q\geq 9$, pairwise intersecting in a point is a sunflower if $|\mathcal{S}|> \left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right)\left(\frac {q^{k + 1} - 1}{q - 1}\right)^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源