论文标题

贝叶斯稀疏调解分析具有针对性的自然间接效应的惩罚

Bayesian Sparse Mediation Analysis with Targeted Penalization of Natural Indirect Effects

论文作者

Song, Yanyi, Zhou, Xiang, Kang, Jian, Aung, Max T., Zhang, Min, Zhao, Wei, Needham, Belinda L., Kardia, Sharon L. R., Liu, Yongmei, Meeker, John D., Smith, Jennifer A., Mukherjee, Bhramar

论文摘要

因果中介分析旨在表征暴露对结果的影响,并量化通过给定调解人或一组感兴趣的中介者起作用的间接效应。随着对大量潜在介体(例如表观基因组或微生物组)的测量值的越来越多,需要新的统计方法来同时容纳高维介体,同时直接靶向自然间接效应(NIE)进行主动介体识别的惩罚。在这里,我们开发了两个新型的先前模型,用于通过在贝叶斯范式中对NIE进行惩罚来鉴定高维中介体的活跃介体。两种方法均在暴露介绍效应和中介效应上指定了联合先验分布,以及(a)四分量的高斯之前或(b)产品阈值高斯先验。通过共同对有助于NIE的两个参数进行建模,提出的方法可以以目标方式对其产品进行惩罚。结果推论可以考虑NIE基础的四组分复合结构。我们通过模拟表明,与其他竞争方法相比,所提出的方法提高了选择和估计精度。我们将方法应用于对两项正在进行的流行病学研究的深入分析:动脉粥样硬化的多族裔研究(MESA)和生命系数的出生队列。两项研究中发现的活跃介体揭示了了解疾病机制的重要生物学途径。

Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modeling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源