论文标题

确切的量子查询算法的表现优于奇偶校验 - 超越对称函数

Exact Quantum Query Algorithms Outperforming Parity -- Beyond The Symmetric functions

论文作者

Mukherjee, Chandra Sekhar, Maitra, Subhamoy

论文摘要

在精确的量子查询模型中,几乎所有为非平凡查询算法的布尔函数都是对称的。该域中最著名的技术利用了奇偶校验决策树,其中两个位的奇偶校验可以通过单个查询获得。因此,精确的量子查询算法的表现优于奇偶校验的决策树很少见。在本文中,我们首先获得最佳的精确量子查询算法($ q_ {algo}(f)$),用于基于$ω\ left的直接总和类(2^{\ frac {\ frac {\ sqrt {n}}}} {2}} {2}}}}}}}} \ right)$ nonymmetric函数。我们通过分析代数正常形式以及一种新颖的毫无用说的策略来构建这些算法。接下来,我们将获得广义的奇偶校验树复杂性($ d _ {\ oplus}(f)$)分析WALSH频谱。最后,我们表明$ q_ {algo} $的查询复杂性是$ \ lceil \ frac {3n} {4} {4} \ rceil $,而$ d _ {\ oplus}(f)$在$ n-1 $和$ n-1 $和$ \ lceil \ frac {3n}之间变化不同在许多情况下,有两种措施。据我们所知,这是大量非对称函数的普遍平价(以及奇偶校验)以外的第一个算法系列。我们还针对较大的(在$ \ frac {n} {4} $中的双重指数级)的Maiorana-McFarland类型函数类实施了这些技术,但只能使用类似的算法技术获得部分结果。

In Exact Quantum Query model, almost all of the Boolean functions for which non-trivial query algorithms exist are symmetric in nature. The most well known techniques in this domain exploit parity decision trees, in which the parity of two bits can be obtained by a single query. Thus, exact quantum query algorithms outperforming parity decision trees are rare. In this paper we first obtain optimal exact quantum query algorithms ($Q_{algo}(f)$) for a direct sum based class of $Ω\left( 2^{\frac{\sqrt{n}}{2}} \right)$ non-symmetric functions. We construct these algorithms by analyzing the algebraic normal form together with a novel untangling strategy. Next we obtain the generalized parity decision tree complexity ($D_{\oplus}(f)$) analysing the Walsh Spectrum. Finally, we show that query complexity of $Q_{algo}$ is $\lceil \frac{3n}{4} \rceil$ whereas $D_{\oplus}(f)$ varies between $n-1$ and $\lceil \frac{3n}{4} \rceil+1$ for different classes, underlining linear separation between the two measures in many cases. To the best of our knowledge, this is the first family of algorithms beyond generalized parity (and thus parity) for a large class of non-symmetric functions. We also implement these techniques for a larger (doubly exponential in $\frac{n}{4}$) class of Maiorana-McFarland type functions, but could only obtain partial results using similar algorithmic techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源