论文标题
用餐:深层网络嵌入的框架
DINE: A Framework for Deep Incomplete Network Embedding
论文作者
论文摘要
网络表示学习(NRL)在各种任务中起着至关重要的作用,例如节点分类和链接预测。它旨在根据网络结构或节点属性来学习节点的低维矢量表示。尽管对完整网络上的嵌入技术进行了深入的研究,但在现实世界应用程序中,收集完整的网络仍然是一项具有挑战性的任务。为了弥合差距,在本文中,我们提出了一种深层不完整的网络嵌入方法,即用餐。具体而言,我们首先使用Experion-Maximization框架来完成丢失的部分,包括部分可观察到的网络中的节点和边缘。为了提高嵌入性能,我们将网络结构和节点属性都考虑到学习节点表示。从经验上讲,我们在多标签分类和链接预测任务上评估了三个网络上的用餐。结果表明,与最先进的基线相比,我们提出的方法的优势。
Network representation learning (NRL) plays a vital role in a variety of tasks such as node classification and link prediction. It aims to learn low-dimensional vector representations for nodes based on network structures or node attributes. While embedding techniques on complete networks have been intensively studied, in real-world applications, it is still a challenging task to collect complete networks. To bridge the gap, in this paper, we propose a Deep Incomplete Network Embedding method, namely DINE. Specifically, we first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework. To improve the embedding performance, we consider both network structures and node attributes to learn node representations. Empirically, we evaluate DINE over three networks on multi-label classification and link prediction tasks. The results demonstrate the superiority of our proposed approach compared against state-of-the-art baselines.