论文标题

通过增量修剪证明概率程序几乎终止

Proving Almost-Sure Termination of Probabilistic Programs via Incremental Pruning

论文作者

Chatterjee, Krishnendu, Goharshady, Ehsan Kafshdar, Novotný, Petr, Zárevúcky, Jiři, Žikelić, Đorđe

论文摘要

具有实现的随机变量和随机分支的经典命令式程序的扩展会导致概率程序。终止问题是此类程序中最基本的可笑性属性之一。定性(又名几乎是在终止)终止问题询问给定程序是否终止了概率1。排名功能为终止非稳定程序提供了一种合理而完整的方法,并且通过排名SuperMartingales(RSMS)实现了对概率程序的扩展。 RSM已扩展到词典RSM,以处理具有涉及控制流结构以及组成方法的程序。现有的基于RSM的方法有两个关键的局限性:首先,基于词典RSM的方法需要一个强有力的非负假设,这并不总是满足。现有的基于RSM的算法方法的第二个关键限制是它们依赖于预先计算的不变性。依靠预先计算的不变性的主要缺点是不足的智力折衷:较弱的不变性可能不足以证明RSM的终止,而使用强大的不变性会导致计算它们的效率低下。我们的贡献是双重的:首先,我们展示了如何放松强烈的非负条件,并且仍然为几乎不受欢迎的终止提供合理的保证。其次,我们提出了一种增量方法,其中计算词典RSM的过程通过迭代修剪程序的部分进行,这些部分已经被证明与安全示意剂合作,这些过程已被证明已终止。特别是,我们的技术不依赖强大的预计不变性。我们提出了实验结果,以显示我们的方法适用于文献中概率程序的实例。

The extension of classical imperative programs with real-valued random variables and random branching gives rise to probabilistic programs. The termination problem is one of the most fundamental liveness properties for such programs. The qualitative (aka almost-sure) termination problem asks whether a given program terminates with probability 1. Ranking functions provide a sound and complete approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via ranking supermartingales (RSMs). RSMs have been extended to lexicographic RSMs to handle programs with involved control-flow structure, as well as for compositional approach. There are two key limitations of the existing RSM-based approaches: First, the lexicographic RSM-based approach requires a strong nonnegativity assumption, which need not always be satisfied. The second key limitation of the existing RSM-based algorithmic approaches is that they rely on pre-computed invariants. The main drawback of relying on pre-computed invariants is the insufficiency-inefficiency trade-off: weak invariants might be insufficient for RSMs to prove termination, while using strong invariants leads to inefficiency in computing them. Our contributions are twofold: First, we show how to relax the strong nonnegativity condition and still provide soundness guarantee for almost-sure termination. Second, we present an incremental approach where the process of computing lexicographic RSMs proceeds by iterative pruning of parts of the program that were already shown to be terminating, in cooperation with a safety prover. In particular, our technique does not rely on strong pre-computed invariants. We present experimental results to show the applicability of our approach to examples of probabilistic programs from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源