论文标题

HERMITE-HADAMARD不平等现象(P,a,b) - 凸函数

Hermite-Hadamard inequalities for (p,a,b)-convex functions

论文作者

Light, Bar

论文摘要

a函数$ f:[a,b] \ rightarrow \ mathbb {r} $称为$(p,a,a,b)$ - 如果$ f $是$ f $ as $ p $ times连续可区分,$ f^{(p)} $是convex and convex and naving and nabling and naving and ungning and $ f^{(k)}(k)}(a)= 0 $ for $ k for ld $ k = 1, $ f^{(j)} $是$ f $的$ j $ th导数。在本说明中,我们证明了hermite-hadamard的不平等现象(p,a,b)$ - 凸功能,其功能比经典的hermite-hadamard不平等明显更紧。我们还证明了涉及$(p,a,b)$ - 凸功能的分数积分的不等式。

A function $f:[a,b] \rightarrow \mathbb{R}$ is called $(p,a,b)$-convex if $f$ is $p$ times continuously differentiable, $f^{(p)}$ is convex and increasing, and $f^{(k)}(a)=0$ for all $k=1,\ldots,p$ where $f^{(j)}$ is the $j$th derivative of $f$. In this note we prove Hermite-Hadamard inequalities for $(p,a,b)$-convex functions that are significantly tighter than the classical Hermite-Hadamard inequality. We also prove inequalities for fractional integrals that involve $(p,a,b)$-convex functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源