论文标题

关于独立综合体的同源

On the homology of independence complexes

论文作者

Berghoff, Marko

论文摘要

图$ g $的独立复合物$ \ mathrm {ind}(g)$是由其独立集形成的简单复合物。本文介绍了$ \ mathrm {indrm {ind}(g)$的简单边界图的变形,该图引起了带有琐碎同源性的双重复合体。朝着正确方向过滤这个双重复合体会诱导光谱序列,该频谱序列收敛到零,并在其第一页上包含$ g $的独立综合体的同源性和$ g $的各种子学,通过从$ g $中删除独立的集合及其社区获得。结果表明,该光谱序列可用于研究$ \ mathrm {ind}(g)$的同源性。此外,对序列第一页的仔细调查表明,$ g $中最大独立集的基数与某些$ G $的某些独立综合体的某些同源群的消失之间的关系。该关系显示为所有路径和环状图。

The independence complex $\mathrm{Ind}(G)$ of a graph $G$ is the simplicial complex formed by its independent sets. This article introduces a deformation of the simplicial boundary map of $\mathrm{Ind}(G)$ that gives rise to a double complex with trivial homology. Filtering this double complex in the right direction induces a spectral sequence that converges to zero and contains on its first page the homology of the independence complexes of $G$ and various subgraphs of $G$, obtained by removing independent sets and their neighborhoods from $G$. It is shown that this spectral sequence may be used to study the homology of $\mathrm{Ind}(G)$. Furthermore, a careful investigation of the sequence's first page exhibits a relation between the cardinality of maximal independent sets in $G$ and the vanishing of certain homology groups of the independence complexes of some subgraphs of $G$. This relation is shown to hold for all paths and cyclic graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源