论文标题

与网络聚合物交联的活性布朗颗粒的异常扩散:langevin动力学模拟和理论

Anomalous diffusion for active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory

论文作者

Joo, Sungmin, Durang, Xavier, Lee, O-chul, Jeon, Jae-Hyung

论文摘要

对活性布朗粒子(ABP)与粘弹性聚合物环境相互作用的动力学的定量理解是一项科学挑战。它与几个跨学科主题密切相关,例如聚合物基质中的活性胶体的微流变以及体内染色体或细胞骨架网络的静脉动力学。基于Langevin动力学模拟和分析理论,我们在这里使用功能性$ F $的星形聚合物深入探索这种粘弹性活动系统,中心交联粒子为ABP。我们观察到,尽管ABP的交联动作自行移动,但通过比例$ \langleδ\ mathbf {r}^2(t)\ rangle \ sim t^α$,通过$α\ leq 1/2 $,通过polymer的Viscoecoealastic反馈。违反直觉,明显的异常指数$α$变小,因为ABP受较大的推进速度驱动,但与功能性$ f $或聚合物的边界条件无关。我们提出了一个精确的理论,并表明主动交联的运动是一个高斯非马克维亚过程,其特征是两个不同的幂律位移相关性。在一个中等的p {é}夹克编号中,它似乎表现得像是分数的布朗运动,带有赫斯特指数$ h =α/2 $,而在高p {é}夹克数字上,聚合物中的自prapelpell oferpell oferpell ofermelpelly噪声会导致均等置换式($ \ sim \ sim \ sim \ n t t $ \ n t t $ \ l l l l l l l l l。 $ -t^{ - 2} $。我们证明,主动交联的异常扩散是由分数langevin方程精确地描述的,具有两个不同的随机噪声。

Quantitatively understanding of the dynamics of an active Brownian particle (ABP) interacting with a viscoelastic polymer environment is a scientific challenge. It is intimately related to several interdisciplinary topics such as the microrheology of active colloids in a polymer matrix and the athermal dynamics of the in vivo chromosome or cytoskeletal networks. Based on Langevin dynamics simulation and analytic theory, here we explore such a viscoelastic active system in depth using a star polymer of functionality $f$ with the center cross-linker particle being ABP. We observe that the ABP cross-linker, despite its self-propelled movement, attains an active subdiffusion with the scaling $\langleΔ\mathbf{R}^2(t)\rangle\sim t^α$ with $α\leq 1/2$, through the viscoelastic feedback from the polymer. Counter-intuitively, the apparent anomaly exponent $α$ becomes smaller as the ABP is driven by a larger propulsion velocity, but is independent of the functionality $f$ or the boundary conditions of the polymer. We set forth an exact theory, and show that the motion of the active cross-linker is a gaussian non-Markovian process characterized by two distinct power-law displacement correlations. At a moderate P{é}clet number, it seemingly behaves as fractional Brownian motion with a Hurst exponent $H=α/2$, whereas, at a high P{é}clet number, the self-propelled noise in the polymer environment leads to a logarithmic growth of the mean squared displacement ($\sim \ln t$) and a velocity autocorrelation decaying as $-t^{-2}$. We demonstrate that the anomalous diffusion of the active cross-linker is precisely described by a fractional Langevin equation with two distinct random noises.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源