论文标题
通过局部自适应花样中,在加性部分线性模型中选择贝叶斯模型
Bayesian model selection in additive partial linear models via locally adaptive splines
论文作者
论文摘要
我们提供了一个灵活的框架,用于在一类添加性部分线性模型之间进行选择,以允许线性和非线性添加剂组件。在实践中,确定应将哪些添加剂组件排除在模型之外,同时确定最终模型中是否应表示为线性或非线性组件,这是一项挑战。在本文中,我们提出了一种贝叶斯模型选择方法,该方法由精心指定的模型类促进,包括选择先前的分布和用于非线性添加剂组件的非参数模型。我们采用了一系列潜在变量,这些变量确定了三种可能性之间每个变量的影响(无效,线性效应和非线性效应),并同时确定每个样条的结的适当惩罚平滑函数的结。使用伪优先分布以及崩溃的方案使我们能够部署行为良好的马尔可夫链蒙特卡洛采样器,无论是用于模型选择还是适合首选模型。我们的方法和算法被部署在一系列数值研究上,并应用于营养流行病学研究。数值结果表明,根据马尔可夫链采样器的有效样本量和总体错误分类速率,所提出的方法优于先前可用的方法。
We provide a flexible framework for selecting among a class of additive partial linear models that allows both linear and nonlinear additive components. In practice, it is challenging to determine which additive components should be excluded from the model while simultaneously determining whether nonzero additive components should be represented as linear or non-linear components in the final model. In this paper, we propose a Bayesian model selection method that is facilitated by a carefully specified class of models, including the choice of a prior distribution and the nonparametric model used for the nonlinear additive components. We employ a series of latent variables that determine the effect of each variable among the three possibilities (no effect, linear effect, and nonlinear effect) and that simultaneously determine the knots of each spline for a suitable penalization of smooth functions. The use of a pseudo-prior distribution along with a collapsing scheme enables us to deploy well-behaved Markov chain Monte Carlo samplers, both for model selection and for fitting the preferred model. Our method and algorithm are deployed on a suite of numerical studies and are applied to a nutritional epidemiology study. The numerical results show that the proposed methodology outperforms previously available methods in terms of effective sample sizes of the Markov chain samplers and the overall misclassification rates.