论文标题
单步定量易感映射的弱监督学习
Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping
论文作者
论文摘要
定量敏感性映射(QSM)利用MRI相信息来估计组织磁敏感性。 QSM的产生需要解决不适合的背景删除(BFR)和野外反转问题。由于当前的QSM技术难以在临床环境下产生可靠的QSM,因此QSM临床翻译受到极大阻碍。最近,QSM重建的深度学习方法(DL)方法表现出了令人印象深刻的表现。由于固有的不存在基础真相,这些DL技术要么通过多重取向采样(COSMOS)地图(COSMOS)地图计算易感性,也可以使用用于训练的合成数据,这些数据受到COSMOS映射的可用性和准确性,或者在训练数据和测试数据和测试数据具有不同的域时受到限制。为了解决这些局限性,我们提出了一种弱监督的单步QSM重建方法,称为WTFI,以直接从没有BFR的总场中重建QSM。 WTFI使用BFR方法重新验证局部场作为对局部组织场和QSM的多任务学习,并且能够恢复大脑边缘附近的磁敏感性估计值,并在RESHARP中侵蚀并实现整个脑QSM估计。定量和定性评估表明,WTFI可以在各种神经影像环境中生成高质量的局部领域和易感性图。
Quantitative susceptibility mapping (QSM) utilizes MRI phase information to estimate tissue magnetic susceptibility. The generation of QSM requires solving ill-posed background field removal (BFR) and field-to-source inversion problems. Because current QSM techniques struggle to generate reliable QSM in clinical contexts, QSM clinical translation is greatly hindered. Recently, deep learning (DL) approaches for QSM reconstruction have shown impressive performance. Due to inherent non-existent ground-truth, these DL techniques use either calculation of susceptibility through multiple orientation sampling (COSMOS) maps or synthetic data for training, which are constrained by the availability and accuracy of COSMOS maps or domain shift when training data and testing data have different domains. To address these limitations, we propose a weakly-supervised single-step QSM reconstruction method, denoted as wTFI, to directly reconstruct QSM from the total field without BFR. wTFI uses the BFR method RESHARP local fields as supervision to perform a multi-task learning of local tissue fields and QSM, and is capable of recovering magnetic susceptibility estimates near the edges of the brain where are eroded in RESHARP and realize whole brain QSM estimation. Quantitative and qualitative evaluation shows that wTFI can generate high-quality local field and susceptibility maps in a variety of neuroimaging contexts.