论文标题
关于在拥挤的交通中的公路上的合并行为的社交互动
On Social Interactions of Merging Behaviors at Highway On-Ramps in Congested Traffic
论文作者
论文摘要
在与其他人类驱动的车辆互动时,在高速公路上的坡道合并对自动驾驶汽车(AV)具有挑战性。达到这一挑战的有效途径需要从人类的示范中探索和利用对互动过程的知识。但是,目前尚不清楚人类驾驶员在整个合并过程中使用哪些信息(或环境状态)指导其行为。本文提供了对高速公路上的合并行为的定量分析和评估,并在大量时间和空间中交通拥堵。根据周围车辆的社会偏好考虑了两种类型的社交互动场景:礼貌和粗鲁。基于现实世界中的交互数据集对表征交互式合并过程的重要环境状态水平进行了经验分析。实验结果揭示了合并过程中的两个基本机制:1)人类驾驶员选择不同状态以在任务执行的不同时刻做出顺序决策,而2)周围车辆的社会偏好会影响变量选择以做出决策。这意味着有效的决策设计应在考虑社会偏爱以实现可比的人类水平绩效的同时滤除无关的信息。这些基本发现阐明了为AV开发新的决策方法。
Merging at highway on-ramps while interacting with other human-driven vehicles is challenging for autonomous vehicles (AVs). An efficient route to this challenge requires exploring and exploiting knowledge of the interaction process from demonstrations by humans. However, it is unclear what information (or environmental states) is utilized by the human driver to guide their behavior throughout the whole merging process. This paper provides quantitative analysis and evaluation of the merging behavior at highway on-ramps with congested traffic in a volume of time and space. Two types of social interaction scenarios are considered based on the social preferences of surrounding vehicles: courteous and rude. The significant levels of environmental states for characterizing the interactive merging process are empirically analyzed based on the real-world INTERACTION dataset. Experimental results reveal two fundamental mechanisms in the merging process: 1) Human drivers select different states to make sequential decisions at different moments of task execution, and 2) the social preference of surrounding vehicles can impact variable selection for making decisions. It implies that efficient decision-making design should filter out irrelevant information while considering social preference to achieve comparable human-level performance. These essential findings shed light on developing new decision-making approaches for AVs.