论文标题
质数定理中误差项的均方根
The mean square of the error term in the prime number theorem
论文作者
论文摘要
我们表明,在Riemann假设上,$ \ limsup_ {x \ to \ infty} i(x)/x^{2} \ leq 0.8603 $,其中$ i(x)= \ int_x^{2x} {2x}(2x}(ψ(ψ(x)-x)-x)-x)^2 \,dx。无条件地说,$ \ frac {1} {5 \,374} \ leq i(x)/x^2 $用于足够大的$ x $,并且$ i(x)/x^{2} $没有限制为$ x \ rightarrow \ rightarrow \ infty $。
We show that, on the Riemann hypothesis, $\limsup_{X\to\infty}I(X)/X^{2} \leq 0.8603$, where $I(X) = \int_X^{2X} (ψ(x)-x)^2\,dx.$ This proves (and improves on) a claim by Pintz from 1982. We also show unconditionally that $\frac{1}{5\,374}\leq I(X)/X^2 $ for sufficiently large $X$, and that the $I(X)/X^{2}$ has no limit as $X\rightarrow\infty$.