论文标题

一致的$ k $ -Median:更简单,更好,健壮

Consistent $k$-Median: Simpler, Better and Robust

论文作者

Guo, Xiangyu, Kulkarni, Janardhan, Li, Shi, Xian, Jiayi

论文摘要

在本文中,我们介绍并研究了与异常值问题的在线一致$ k $ clustering,从而概括了[lattanzi-vassilvitskii,icml17]中研究的非外观版本。 我们表明,一种简单的基于本地搜索的在线算法可以通过$ o(k^2 \ log^2(nd))$互换中位数(追索权)的$ O(k^2 \ log^2(nd))给出一个平均近似值,其中$ d $是指标的直径。与[Lattanzi-vassilvitskii,icml17]相比,当限制在没有异常值的问题的情况下,我们的算法更简单,确定性并提供更好的近似值和追索权。

In this paper we introduce and study the online consistent $k$-clustering with outliers problem, generalizing the non-outlier version of the problem studied in [Lattanzi-Vassilvitskii, ICML17]. We show that a simple local-search based online algorithm can give a bicriteria constant approximation for the problem with $O(k^2 \log^2 (nD))$ swaps of medians (recourse) in total, where $D$ is the diameter of the metric. When restricted to the problem without outliers, our algorithm is simpler, deterministic and gives better approximation ratio and recourse, compared to that of [Lattanzi-Vassilvitskii, ICML17].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源