论文标题
海森贝格自旋1/2 xxz链中的分解,相干性和不对称性横向磁场和dzyaloshinskii-moriya相互作用
Factorization, coherence and asymmetry in the Heisenberg spin-1/2 XXZ chain a transverse magnetic field and with Dzyaloshinskii-Moriya interaction
论文作者
论文摘要
我们研究了使用量子信息测量方法研究与Dzyaloshinskii-Moriya相互作用(DMI)(DMI)和横向磁场的1D Heisenberg Spin-1/2 XXZ链的分解,相干性和不对称性能。纵向和横向DM矢量均被考虑。使用数值DMRG,我们计算单键,两旋旋转并发和wigner-yananse-skew信息。我们表明,纵向DMI摧毁了横向DMI保留的因素化属性。我们将缺乏因解性与破坏$ u(1)$旋转对称性在每个晶格位点上的局部磁化轴的破坏。从物理上讲,对称性的破裂表现在手性电流的存在中。尽管纵向DMI摧毁了因素方面的性能,但我们获得了一个“假性化的”字段($ h_ {pf} $),在该字段中,纠缠并因此违反了$ u(1)$对称性是最小的。我们的计算表明$ h_ {pf} $处的相干基态。纠缠过渡(ET)发生在该领域,其特征是其附近的增强但有限的两旋旋转范围与ET对ET的分解范围的不同($ h_ {f} $)相反。我们将不对称性与“框架”或国家充当某种测量的参考框架的能力联系起来。在没有纵向DMI(或在存在横向DMI的情况下)的情况下,在$ h_ {f} $的情况下,单个位点磁化轴指定完整系统的常见$ z $ - 轴,但由于缺乏相位参考而导致完整的笛卡尔参考框架。另一方面,在存在纵向DMI的情况下,我们的结果表明,在$ h_ {pf} $时,局部磁化和手性电流足以指定完整的笛卡尔参考框架,而手性电流为宏观量,以确定相位参考。
We investigate the factorization, coherence and asymmetry properties of the 1d Heisenberg spin-1/2 XXZ chain with Dzyaloshinskii-Moriya interaction (DMI) and a transverse magnetic field using quantum information measures. Both longitudinal and transverse DM vectors are considered. Using numerical DMRG, we compute the one-tangle, two-spin concurrence and the Wigner-Yananse-skew information. We show that a longitudinal DMI destroys the factorizability property while a transverse DMI preserves it. We relate the absence of factorizability to the breaking of the $U(1)$ rotation symmetry about the local magnetization axis at each lattice site. Physically, breaking of the symmetry manifests in the existence of a chiral current. Although the longitudinal DMI destroys factorizability, we obtain a `pseudofactorizing' field ($h_{pf}$) at which entanglement and hence violation of the $U(1)$ symmetry is minimal. Our calculations indicate a phase coherent ground state at $h_{pf}$. An entanglement transition (ET) occurs across this field which is characterized by an enhanced but finite range of two-spin concurrence in its vicinity in contrast with the diverging range of the concurrence for the ET across the factorizing field ($h_{f}$). We relate the asymmetry to the `frameness' or the ability for the state to act as a reference frame for some measurement. In absence of longitudinal DMI (or in presence of transverse DMI), at $h_{f}$, the single site magnetization axis specifies the common $z$-axis for the full system but not the full Cartesian reference frame due to a lack of phase reference. On the other hand, in the presence of a longitudinal DMI, our results indicate that at $h_{pf}$, the local magnetization and the chiral current are sufficient to specify the full Cartesian reference frame, with the chiral current being the macroscopic quantity to determine the phase reference.