论文标题

新形式的Dedekind的内核总和

The kernel of newform Dedekind sums

论文作者

Nguyen, Evuilynn, Ramirez, Juan J., Young, Matthew P.

论文摘要

新形式的Dedekind总和是一类交叉的同构,是由新形式的Eisenstein系列产生的。我们启动对这些新型Dedekind总和的内核的研究。我们的结果可以松散地描述为表明这些内核既不“太大”,也不是“太小”。我们以对Dedekind和Dedekind总和的Galois作用的观察结论,该行动允许在Dedekind和Dedekind总和的数值计算中显着计算效率。

Newform Dedekind sums are a class of crossed homomorphisms that arise from newform Eisenstein series. We initiate a study of the kernel of these newform Dedekind sums. Our results can be loosely described as showing that these kernels are neither "too big" nor "too small." We conclude with an observation about the Galois action on Dedekind sums that allows for significant computational efficiency in the numerical calculation of Dedekind sums.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源