论文标题
限制定理的随机非均匀扩展或用指数尾巴的双曲线图
Limit theorems for random non-uniformly expanding or hyperbolic maps with exponential tails
论文作者
论文摘要
我们证明了浆果定理,局部中央限制定理以及(本地)大的,(全球)的中等偏差原则。 (均匀)随机非均匀扩展或双曲线图具有指数的第一返回时间。 使用现有结果,该问题将减少为某些随机(Young)塔式扩展,这是本文的主要重点。在随机塔上,我们将使用随机复合物圆锥锥相对于复杂的希尔伯特射影指标的收缩特性获得结果。
We prove a Berry-Esseen theorem, a local central limit theorem and (local) large and (global) moderate deviations principles for i.i.d. (uniformly) random non-uniformly expanding or hyperbolic maps with exponential first return times. Using existing results the problem is reduced to certain random (Young) tower extensions, which is the main focus of this paper. On the random towers we will obtain our results using contraction properties of random complex equivariant cones with respect to the complex Hilbert projective metric.