论文标题

通过模拟感知和预测来测试自动驾驶车辆的安全性

Testing the Safety of Self-driving Vehicles by Simulating Perception and Prediction

论文作者

Wong, Kelvin, Zhang, Qiang, Liang, Ming, Yang, Bin, Liao, Renjie, Sadat, Abbas, Urtasun, Raquel

论文摘要

我们提出了一种在模拟中测试自动驾驶车辆安全性的新方法。我们提出了传感器模拟的替代方法,因为传感器模拟很昂贵并且具有较大的域间隙。取而代之的是,我们直接模拟了自动驾驶车辆的感知和预测系统的输出,从而实现了现实的运动计划测试。具体而言,我们使用地面真实标签的形式以及真实的感知和预测输出的形式使用配对数据来训练一个预测在线系统将产生的模型。重要的是,我们系统的输入由高清晰度图,边界框和轨迹组成,在几分钟之内,测试工程师可以轻松地勾勒出它们。这使我们的方法是更可扩展的解决方案。两个大规模数据集的定量结果表明,我们可以使用模拟实际测试运动计划。

We present a novel method for testing the safety of self-driving vehicles in simulation. We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps. Instead, we directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing. Specifically, we use paired data in the form of ground truth labels and real perception and prediction outputs to train a model that predicts what the online system will produce. Importantly, the inputs to our system consists of high definition maps, bounding boxes, and trajectories, which can be easily sketched by a test engineer in a matter of minutes. This makes our approach a much more scalable solution. Quantitative results on two large-scale datasets demonstrate that we can realistically test motion planning using our simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源