论文标题

关于$*$ - 独立非对称随机矩阵的Schur-Hadamard产品的收敛

On $*$-Convergence of Schur-Hadamard Products of Independent Nonsymmetric Random Matrices

论文作者

Mukherjee, Soumendu Sundar

论文摘要

令$ \ {x_α\} _ {α\ in \ mathbb {z}} $和$ \ {y_α\} _ {α{α\ in \ mathbb {z}} $是两个独立的零均值,单位变异随机变量的独立集合,具有均匀限制的所有级数。考虑一个非对称toeplitz矩阵$ x_n =(((x_ {i -j}))_ {1 \ le i,j \ le n} $和hankel matrix $ y_n =((y__ {y_ {i + j})) ElementWise/Schur-Hadamard产品。在本文中,我们几乎可以肯定地表明,$ n^{ - 1/2} m_n $,是$*$ - 概率空间$(\ Mathcal {m} _n(\ Mathbb {C}),\ frac {1} {1} {n} {n} {n} {n} \ mathrm {tr})$,$*$*$*$*。与I.I.D. Rademacher条目,该结构为只有$ o(n)$随机性的圆形变量提供了矩阵模型。我们还考虑了一个因设置,其中$ \ {x_α\} $和$ \ {y_β\} $是独立的强度乘法系统(àlagaposhkin [7]),可满足额外的\ emph {可接受性}条件,并且具有均匀界限的所有顺序 - $ \ {\ sqrt {2} \ sin(2^nπu)\} _ {n \ in \ mathbb {z} _+} $,其中$ \ sim \ sim \ sim \ sim \ mathrm {cormiform {roformaniform}(0,1)$。在这种情况下,我们向圆形变量的$ n^{ - 1/2} m_n $的$*$ - 矩矩阵的不可估量和概率收敛。最后,我们将结果概括为$ x_n =((x__ {l_x(i,j)})的结构性随机矩阵的Schur-Hadamard产品)_ {1 {1 \ le i,j \ le n} $ and $ y_n =((y__y(y y y y n y y y n y y ly n y le n y y le n y le n ot) \ emph {link-fintsions} $ l_x $和$ l_y $,最著名的是地图$(i,j)\ mapsto(l_x(i,j),l_y(i,j))$的注射率。根据数值证据,我们猜测,循环定律$μ_ {\ mathrm {circ}} $,即$ \ mathbb {c} $的单位磁盘上的统一度量,这也是循环变量的棕色度量,实际上是$ n^{ - 1/2} m_ $ n^的极限频谱。

Let $\{x_α\}_{α\in \mathbb{Z}}$ and $\{y_α\}_{α\in \mathbb{Z}}$ be two independent collections of zero mean, unit variance random variables with uniformly bounded moments of all orders. Consider a nonsymmetric Toeplitz matrix $X_n = ((x_{i - j}))_{1 \le i, j \le n}$ and a Hankel matrix $Y_n = ((y_{i + j}))_{1 \le i, j \le n}$, and let $M_n = X_n \odot Y_n$ be their elementwise/Schur-Hadamard product. In this article, we show that almost surely, $n^{-1/2}M_n$, as an element of the $*$-probability space $(\mathcal{M}_n(\mathbb{C}), \frac{1}{n}\mathrm{tr})$, converges in $*$-distribution to a circular variable. With i.i.d. Rademacher entries, this construction gives a matrix model for circular variables with only $O(n)$ bits of randomness. We also consider a dependent setup where $\{x_α\}$ and $\{y_β\}$ are independent strongly multiplicative systems (à la Gaposhkin [7]) satisfying an additional \emph{admissibility} condition, and have uniformly bounded moments of all orders -- a nontrivial example of such a system being $\{\sqrt{2}\sin(2^n πU)\}_{n \in \mathbb{Z}_+}$, where $U \sim \mathrm{Uniform}(0, 1)$. In this case, we show in-expectation and in-probability convergence of the $*$-moments of $n^{-1/2}M_n$ to those of a circular variable. Finally, we generalise our results to Schur-Hadamard products of structured random matrices of the form $X_n = ((x_{L_X(i, j)}))_{1 \le i, j \le n}$ and $Y_n = ((y_{L_Y(i, j)}))_{1 \le i, j \le n}$, under certain assumptions on the \emph{link-functions} $L_X$ and $L_Y$, most notably the injectivity of the map $(i, j) \mapsto (L_X(i, j), L_Y(i, j))$. Based on numerical evidence, we conjecture that the circular law $μ_{\mathrm{circ}}$, i.e. the uniform measure on the unit disk of $\mathbb{C}$, which is also the Brown measure of a circular variable, is in fact the limiting spectral measure of $n^{-1/2}M_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源