论文标题

拓扑稳定和$β$ - 团体动作的观点

Topologically stable and $β$-persistent points of group actions

论文作者

Khan, Abdul Gaffar, Das, Tarun

论文摘要

在本文中,我们引入了拓扑稳定的积分,$β$ - 取消点,$β$ - 透明的财产,$β$ - 持久的度量和几乎$β$ - 首先可计数的紧凑型公制空间的Hausdorff组动作的措施。我们证明,所有$β$ - 垂直点的集合都是可以衡量的,如果该动作是公平的,则它是封闭的。我们还证明,所有$β$ compersist的措施的集合都是凸集,每几乎$β$ - 取消度量是$β$ - 近距离的度量。最后,我们证明,紧凑型公制空间的每一个均等均值稳定的首先可计数的Hausdorff组动作均为$β$ - 呈现。特别是,每一个均值的拓扑稳定流量为$β$ - 呈稳定性。

In this paper, we introduce topologically stable points, $β$-persistent points, $β$-persistent property, $β$-persistent measures and almost $β$-persistent measures for first countable Hausdorff group actions of compact metric spaces. We prove that the set of all $β$-persistent points is measurable and it is closed if the action is equicontinuous. We also prove that the set of all $β$-persistent measures is a convex set and every almost $β$-persistent measure is a $β$-persistent measure. Finally, we prove that every equicontinuous pointwise topologically stable first countable Hausdorff group action of a compact metric space is $β$-persistent. In particular, every equicontinuous pointwise topologically stable flow is $β$-persistent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源