论文标题

固定的Hastings-Levitov的增长

Growth of Stationary Hastings-Levitov

论文作者

Berger, Noam, Procaccia, Eviatar B., Turner, Amanda

论文摘要

我们构建和研究Hastings-Levitov $(0)$型号的固定版本。我们证明,与经典的HL $(0)$模型不同,在固定案例中,附着在骨料上的粒子的大小很紧,因此提出了SHL $(0)$作为潜在的固定非晶格变体的潜在候选,用于扩散限制聚合(DLA)。固定设置以及对谐波度量的几何解释,产生了新的几何结果,例如稳定,手臂的有限和手臂尺寸分布。我们表明,在适当的缩放下,shl $(0)$中的武器收敛到布朗运动的图表,该图具有分形尺寸$ 3/2 $。此外,我们表明,具有$ n $颗粒的树木达到$ n^{2/3} $的订单高度,对应于1983年从1983年开始在长线段上生长的DLA的循环半径。

We construct and study a stationary version of the Hastings-Levitov$(0)$ model. We prove that, unlike in the classical HL$(0)$ model, in the stationary case the size of particles attaching to the aggregate is tight, and therefore SHL$(0)$ is proposed as a potential candidate for a stationary off-lattice variant of Diffusion Limited Aggregation (DLA). The stationary setting, together with a geometric interpretation of the harmonic measure, yields new geometric results such as stabilization, finiteness of arms and arm size distribution. We show that, under appropriate scaling, arms in SHL$(0)$ converge to the graph of Brownian motion which has fractal dimension $3/2$. Moreover we show that trees with $n$ particles reach a height of order $n^{2/3}$, corresponding to a numerical prediction of Meakin from 1983 for the gyration radius of DLA growing on a long line segment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源