论文标题

检测大型网络中的异常流量

Detecting Abnormal Traffic in Large-Scale Networks

论文作者

Elsayed, Mahmoud Said, Le-Khac, Nhien-An, Dev, Soumyabrata, Jurcut, Anca Delia

论文摘要

随着技术的快速进步,组织需要快速扩大其信息技术(IT)基础架构。硬件,软件和服务,价格低廉。但是,网络服务和应用程序中的动态增长会产生安全漏洞和新风险,这些风险可以通过各种攻击来利用。例如,用户扎根(U2R)和遥控器到本地(R2L)攻击类别可能会造成重大损坏并瘫痪整个网络系统。由于与正常流量相似,因此这种攻击不容易检测到。尽管网络异常检测系统已被广泛用于对恶意流量进行分类和检测,但在数据集中发现和识别少数群体攻击存在许多挑战。在本文中,我们对现有的机器学习(ML)方法提供了详细的系统分析,可以解决大多数此类攻击。此外,我们建议使用长期内存(LSTM)自动编码器基于深度学习(DL)框架,该框架可以准确地检测到网络流量中的恶意流量。我们在入侵检测系统(IDSS)的公开可用数据集中执行实验。与其他基准测试方法相比,我们获得了攻击检测的显着改善。因此,我们的方法充满信心,可以使这些网络免受恶意流量。

With the rapid technological advancements, organizations need to rapidly scale up their information technology (IT) infrastructure viz. hardware, software, and services, at a low cost. However, the dynamic growth in the network services and applications creates security vulnerabilities and new risks that can be exploited by various attacks. For example, User to Root (U2R) and Remote to Local (R2L) attack categories can cause a significant damage and paralyze the entire network system. Such attacks are not easy to detect due to the high degree of similarity to normal traffic. While network anomaly detection systems are being widely used to classify and detect malicious traffic, there are many challenges to discover and identify the minority attacks in imbalanced datasets. In this paper, we provide a detailed and systematic analysis of the existing Machine Learning (ML) approaches that can tackle most of these attacks. Furthermore, we propose a Deep Learning (DL) based framework using Long Short Term Memory (LSTM) autoencoder that can accurately detect malicious traffics in network traffic. We perform our experiments in a publicly available dataset of Intrusion Detection Systems (IDSs). We obtain a significant improvement in attack detection, as compared to other benchmarking methods. Hence, our method provides great confidence in securing these networks from malicious traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源