论文标题
偶像:使用行的IMU-DVS进程框架的框架
IDOL: A Framework for IMU-DVS Odometry using Lines
论文作者
论文摘要
在本文中,我们介绍了偶像,这是一种基于优化的IMU-DVS使用线的框架。事件摄像机,也称为动态视觉传感器(DVSS),生成了在每个单独像素的照明变化时触发的事件的高度异步流。这个新颖的范式在低照明条件和高速运动中具有优势。尽管如此,这种非常规的传感方式为执行场景重建或运动估计带来了新的挑战。所提出的方法提供了利用惯性读数的连续时间表示,将每个事件与及时准确的惯性数据相关联。该方法的前端提取物属于环境中属于线段的事件群集,而后端通过最大程度地减少单个事件与图像空间中线的投影之间的点对线距离,估计系统的轨迹与线的3D位置。提出了一种新颖的吸引力/排斥机制,以准确估计线的四肢,避免在事件数据中明确检测。提出的方法是针对使用公共数据集的基于最新框架的最先进的视觉惯性循环框架进行了基准测试的。结果表明,偶像在大多数数据集上以相同的数量级执行,甚至显示出更好的方向估计。这些发现可能会对DVS的新算法产生重大影响。
In this paper, we introduce IDOL, an optimization-based framework for IMU-DVS Odometry using Lines. Event cameras, also called Dynamic Vision Sensors (DVSs), generate highly asynchronous streams of events triggered upon illumination changes for each individual pixel. This novel paradigm presents advantages in low illumination conditions and high-speed motions. Nonetheless, this unconventional sensing modality brings new challenges to perform scene reconstruction or motion estimation. The proposed method offers to leverage a continuous-time representation of the inertial readings to associate each event with timely accurate inertial data. The method's front-end extracts event clusters that belong to line segments in the environment whereas the back-end estimates the system's trajectory alongside the lines' 3D position by minimizing point-to-line distances between individual events and the lines' projection in the image space. A novel attraction/repulsion mechanism is presented to accurately estimate the lines' extremities, avoiding their explicit detection in the event data. The proposed method is benchmarked against a state-of-the-art frame-based visual-inertial odometry framework using public datasets. The results show that IDOL performs at the same order of magnitude on most datasets and even shows better orientation estimates. These findings can have a great impact on new algorithms for DVS.