论文标题

排名增强的对话世代

Ranking Enhanced Dialogue Generation

论文作者

Hao, Changying, Pang, Liang, Lan, Yanyan, Sun, Fei, Guo, Jiafeng, Cheng, Xueqi

论文摘要

如何有效利用对话历史是多转向对话的关键问题。以前的作品通常采用各种神经网络体系结构(例如,复发性神经网络,注意机制和等级结构)来对历史进行建模。但是,Sankar等人最近的一项实证研究。已经表明,这些体系结构缺乏理解和建模对话历史动态的能力。例如,使用广泛使用的架构对对话历史的扰动不敏感,例如单词悬而未决,丢失的话语和话语重新排序。为了解决这个问题,我们在本文中提出了一个排名增强的对话生成框架。尽管传统的表示编码器和响应生成模块,但仍引入了另一个排名模块,以建模以前的话语和连续话语之间的排名关系。具体而言,以前的话语和连续的话语被视为查询和相应的文档,并且在学习过程中设计了本地和全球排名损失。这样,就可以明确捕获对话历史记录中的动态。为了评估我们所提出的模型,我们在三个公共数据集(即Babi,Mealachat和JDC)上进行了广泛的实验。实验结果表明,与最先进的对话生成模型相比,我们的模型在定量措施和人类判断方面产生更好的反应。此外,我们提供了一些详细的实验分析,以说明改进的来源以及如何来自何处。

How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation. Previous works usually employ various neural network architectures (e.g., recurrent neural networks, attention mechanisms, and hierarchical structures) to model the history. However, a recent empirical study by Sankar et al. has shown that these architectures lack the ability of understanding and modeling the dynamics of the dialogue history. For example, the widely used architectures are insensitive to perturbations of the dialogue history, such as words shuffling, utterances missing, and utterances reordering. To tackle this problem, we propose a Ranking Enhanced Dialogue generation framework in this paper. Despite the traditional representation encoder and response generation modules, an additional ranking module is introduced to model the ranking relation between the former utterance and consecutive utterances. Specifically, the former utterance and consecutive utterances are treated as query and corresponding documents, and both local and global ranking losses are designed in the learning process. In this way, the dynamics in the dialogue history can be explicitly captured. To evaluate our proposed models, we conduct extensive experiments on three public datasets, i.e., bAbI, PersonaChat, and JDC. Experimental results show that our models produce better responses in terms of both quantitative measures and human judgments, as compared with the state-of-the-art dialogue generation models. Furthermore, we give some detailed experimental analysis to show where and how the improvements come from.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源