论文标题
分数布朗运动的自我解交的高阶衍生物
Higher order derivative of self-intersection local time for fractional Brownian motion
论文作者
论文摘要
我们考虑了$ k $ th的订单衍生物的存在和Hölder的连续性条件,以$ d $ d $二维的分数布朗尼运动,其中$ k =(k_1,k_2,k_2,\ cdots,k_d)$。此外,我们显示了$ h = \ frac {2} {3} $和$ d = 1 $的关键情况的限制定理,这是Jung and Markowsky(2014)的猜想。
We consider the existence and Hölder continuity conditions for the $k$-th order derivatives of self-intersection local time for $d$-dimensional fractional Brownian motion, where $k=(k_1,k_2,\cdots, k_d)$. Moreover, we show a limit theorem for the critical case with $H=\frac{2}{3}$ and $d=1$, which was conjectured by Jung and Markowsky (2014).