论文标题

分数布朗运动的自我解交的高阶衍生物

Higher order derivative of self-intersection local time for fractional Brownian motion

论文作者

Yu, Qian

论文摘要

我们考虑了$ k $ th的订单衍生物的存在和Hölder的连续性条件,以$ d $ d $二维的分数布朗尼运动,其中$ k =(k_1,k_2,k_2,\ cdots,k_d)$。此外,我们显示了$ h = \ frac {2} {3} $和$ d = 1 $的关键情况的限制定理,这是Jung and Markowsky(2014)的猜想。

We consider the existence and Hölder continuity conditions for the $k$-th order derivatives of self-intersection local time for $d$-dimensional fractional Brownian motion, where $k=(k_1,k_2,\cdots, k_d)$. Moreover, we show a limit theorem for the critical case with $H=\frac{2}{3}$ and $d=1$, which was conjectured by Jung and Markowsky (2014).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源