论文标题

从定位景观理论计算出非常低的能量的本征态定位长度

Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory

论文作者

Shamailov, Sophie S., Brown, Dylan J., Haase, Thomas A., Hoogerland, Maarten D.

论文摘要

尽管安德森本地化在很大程度上得到了充分理解,但传统上的描述却相当繁琐。最近发展的理论 - 本地化景观理论(LLT) - 对替代方法具有无与伦比的优势和优势,无论是计算和概念上的。首先,我们证明无法直接从确切的本征态开始直接计算本定位长度,从而激发了对LLT方法的需求。然后,我们确认具有LLT有效潜力的Hamiltonian具有与物理潜力非常相似的低能量本征态,这证明了在我们的新方法中有效潜在作用的关键作用。我们开始使用LLT来计算非常低能,最大局部本征态的定位长度,这是由特征态指数衰减的长度尺度定义的,(手动)测试我们的发现,以针对精确的斜体化。然后,我们描述了几种机制,这些机制在较高的能量中分布在较高的能量中,在这些机制中,有效的电势图像分解了,并明确证明我们的方法不再适用于该制度。我们通过解释与多维隧道的更一般问题的联系并讨论所涉及的近似值,将计算方案放在上下文中。我们计算定位长度的方法可以应用于非常低的能量下的(几乎)任意无序的连续电势。

While Anderson localisation is largely well-understood, its description has traditionally been rather cumbersome. A recently-developed theory -- Localisation Landscape Theory (LLT) -- has unparalleled strengths and advantages, both computational and conceptual, over alternative methods. To begin with, we demonstrate that the localisation length cannot be conveniently computed starting directly from the exact eigenstates, thus motivating the need for the LLT approach. Then, we confirm that the Hamiltonian with the effective potential of LLT has very similar low energy eigenstates to that with the physical potential, justifying the crucial role the effective potential plays in our new method. We proceed to use LLT to calculate the localisation length for very low-energy, maximally localised eigenstates, as defined by the length-scale of exponential decay of the eigenstates, (manually) testing our findings against exact diagonalisation. We then describe several mechanisms by which the eigenstates spread out at higher energies where the tunnelling-in-the-effective-potential picture breaks down, and explicitly demonstrate that our method is no longer applicable in this regime. We place our computational scheme in context by explaining the connection to the more general problem of multidimensional tunnelling and discussing the approximations involved. Our method of calculating the localisation length can be applied to (nearly) arbitrary disordered, continuous potentials at very low energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源