论文标题

使用卷积神经网络增强纤维方向分布

Enhancing Fiber Orientation Distributions using convolutional Neural Networks

论文作者

Lucena, Oeslle, Vos, Sjoerd B., Vakharia, Vejay, Duncan, John, Ashkan, Keyoumars, Sparks, Rachel, Ourselin, Sebastien

论文摘要

基于扩散磁共振成像(DMRI)的准确局部纤维取向分布(FOD)建模能够解决复杂的纤维构型从特定的采集方案中受益于对大量梯度方向(B-VEC),高最大B-VALUE(B-VALE(B-VALS)(B-VALS)和多个B-value(多个B-Values)采样的特定采集方案。但是,获取时间在临床环境中受到限制,商业扫描仪可能无法提供此类DMRI序列。因此,DMRI通常被作为单壳(单个B值)获取。在这项工作中,我们学到了改进的商业获得MRI的FOD。我们评估了基于斑块的3D卷积神经网络(CNN),它们可以从单壳表示中回归多壳FOD表示的能力,其中该表示是从约束的球形反卷积(CSD)获得的球形谐波中,从而使FODS获得了球形谐波。我们在人类Connectome项目和内部数据集的数据上评估了U-NET和HighResnet 3D CNN体系结构。我们评估了每个CNN模型如何解决局部光纤取向1)在具有相同DMRI采集协议的数据集上训练和测试时; 2)在具有不同DMRI采集协议的数据集上测试时,与训练CNN模型相比; 3)在在数据集上测试的梯度方向比训练CNN型号的梯度方向少。我们的方法可以对具有很少梯度方向的单壳DMRI采集方案进行强大的CSD模型估计,从而减少了采集时间,从而促进了改进的FOD估计到时间限制的临床环境的翻译。

Accurate local fiber orientation distribution (FOD) modeling based on diffusion magnetic resonance imaging (dMRI) capable of resolving complex fiber configurations benefits from specific acquisition protocols that sample a high number of gradient directions (b-vecs), a high maximum b-value(b-vals), and multiple b-values (multi-shell). However, acquisition time is limited in a clinical setting and commercial scanners may not provide such dMRI sequences. Therefore, dMRI is often acquired as single-shell (single b-value). In this work, we learn improved FODs for commercially acquired MRI. We evaluate patch-based 3D convolutional neural networks (CNNs)on their ability to regress multi-shell FOD representations from single-shell representations, where the representation is a spherical harmonics obtained from constrained spherical deconvolution (CSD) to model FODs. We evaluate U-Net and HighResNet 3D CNN architectures on data from the Human Connectome Project and an in-house dataset. We evaluate how well each CNN model can resolve local fiber orientation 1) when training and testing on datasets with the same dMRI acquisition protocol; 2) when testing on a dataset with a different dMRI acquisition protocol than used to train the CNN models; and 3) when testing on a dataset with a fewer number of gradient directions than used to train the CNN models. Our approach may enable robust CSD model estimation on single-shell dMRI acquisition protocols with few gradient directions, reducing acquisition times, facilitating translation of improved FOD estimation to time-limited clinical environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源